Update
[May 2015]
- A significantly enhanced version of this online tool
was made part of the software package DynaFit.
- See BioKin Technical Note TN-2015-03 for details.
Examples
Below are a few examples that were used to test the present implementation of the King-Altman method. You may wish to modify the examples, for example by adding activators and/or inhibitors.
Copy text from the editable areas below, and paste it into the data submision page.
IMPORTANT NOTE: All activators and/or inhibitors must be shown in the [modifiers] section (as a comma separate list, if more than one modifier is present).
Examples
Irreversible Michaelis-Menten mechanism
Reversible Michaelis-Menten mechanism
Competitive inhibition
Partial mixed-type noncompetitive inhibition
Botts Morales modifier mechanism
Bi Bi Ordered mechanism
Bi Bi Theorell-Chance mechanism
Bi Uni Random mechanism
Bi Bi Random mechanism
Dihydrofolate reductase
Mixed-type inhibition of dihydrofolate reductase
Irreversible Michaelis-Menten mechanism | |
The simplest possible enzymatic reaction mechanism:
Reversible Michaelis-Menten mechanism | |
Fully reversible version of the mechanism above:
Competitive inhibition | |
Reversible Michaelis-Menten in the presence of a competitive inhibitor:
Partial mixed-type noncompetitive inhibition | |
The ternary complex Enzyme-Substrate-Inhibitor is partially catalytically active:
Botts Morales modifier mechanism | |
The Botts-Morales general modifier mechanism is a favored system for testing rate equation derivation methods:
Bi Bi Ordered mechanism | |
Compare the results with Segel's Enzyme Kinetics, page 562 (Equation IX-87):
Bi Bi Theorell-Chance mechanism | |
Compare the results with Segel's Enzyme Kinetics, page 594 (Equation IX-122):
Bi Uni Random mechanism | |
Compare the results with Segel's Enzyme Kinetics, page 647 (Equation IX-181):
Bi Bi Random mechanism | |
Compare the results with Segel's Enzyme Kinetics, page 649: this mechanism should produce 48 denominator terms.
Dihydrofolate reductase | |
Benkovic et al. (1988) painstakingly determined all elementary rate constants in this relatively complex mechanism:
Mixed-type inhibition of dihydrofolate reductase | |
Appleman et al. (1988) determined that certain inhibitors bind both to free dihydrofolate reductase, and to the DHRF-NADPH+ complex.
This system represents the most complex mechanism in this collection of example problems:
|