
Chapter 2

Multi-Step Reactions: The Methods

for Analytical Solving the Direct Problem

2.1 Developing a Mathematical Model of a Reaction

If a reaction proceeds by a large number of elementary steps and involves many

different substances, developing its mathematical model “by hand” turns into a quite

exhausting procedure fraught with different possible errors, especially provided

complicated reaction stoichiometry. This stage can be considerably simplified by

using matrix algebra suits.

Let us consider a reversible reaction consisting of two elementary steps:

ðIÞ Aþ B�!k1 AB;

ðIIÞ AB�!k2 Aþ B:

A rate of each of the steps is written as

~r ¼ k1CAðtÞCBðtÞ;

r
 ¼ k2CABðtÞ:

Obviously, a reaction mathematical model is an equation system

dCAðtÞ
dt

¼ �~r þ r
 ¼ �k1CAðtÞCBðtÞ þ k2CABðtÞ;

dCBðtÞ
dt

¼ �~r þ r
 ¼ �k1CAðtÞCBðtÞ þ k2CABðtÞ;

dCABðtÞ
dt

¼~r � r
 ¼ k1CAðtÞCBðtÞ � k2CABðtÞ:
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Let us define a stoichiometric matrix a for the given kinetic scheme as

a ¼ �1 �1 1

1 1 �1
� �

:

The number of rows in a stoichiometric matrix corresponds to the number of

elementary steps and the number of columns is equal to the total number of

substances taking part in a reaction. Each matrix element is a stoichiometric factor

of a definite substance at a given step. At the same time, a minus sign is ascribed to

stoichiometric factors of reactants and ones of products have a positive sign. If a

substance is not involved in a given stage, a corresponding stoichiometric factor is

equal to zero. Thus, the middle column of the stoichiometric matrix reflects

participation of substance B in the overall process: it is consumed at the step (I)

and accumulated at the step (II). Let us place expressions for the rates of each of the

steps in a rate vector r

r ¼ ~r
r
 

� �
¼ k1CACB

k2CAB

� �
:

Let us now find a product of the transposed matrix a and the vector r

aT � r ¼
�1 1

�1 1

1 �1

2
4

3
5 k1CAðtÞCBðtÞ

k2CABðtÞ
� �

¼
�k1CAðtÞCBðtÞ þ k2CABðtÞ
k1CAðtÞCBðtÞ � k2CABðtÞ
k1CAðtÞCBðtÞ � k2CABðtÞ

2
4

3
5:

It is easy to see that this yields a vector formed by right parts of a differential

equation system for a kinetic scheme under consideration.

Thereby, a kinetic equation for a multi-step reaction in a matrix form is written as:

d

dt
CðtÞ ¼ aT � rðtÞ: (2.1)

Naturally, the above multiplication of a stoichiometric matrix and a rate vector

can be performed by suits of mathematical packages. Figure 2.1 shows the opera-

tion sequence of such automatic developing the mathematical model of the consid-

ered reaction in the Mathcad environment.

Another way of developing a mathematical model can also be indicated. If an

overall chain of conversions contains reversible steps, they can be considered as

formally elementary. As a result, dimensions of a stoichiometric matrix and a rate

vector can be reduced (Fig. 2.2).

So as to perform the above operations with a stoichiometric matrix and a rate

vector in Maple, it is necessary to preliminarily link the library of built-in com-

mands and functions of linear algebra LinearAlgebra (Fig. 2.3).
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Fig. 2.1 Developing the mathematical model of the reaction in Mathcad

Fig. 2.2 Using the reduced stoichiometric matrix
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The most significant stoichiometric matrix tool, which plays an important role in

solving kinetic problems, is its rank. As it is known, a matrix rank defines the

number of its linearly independent rows or columns. Using of the notion of a matrix

rank allows to reduce the number of differential equations in a reaction mathemati-

cal model and, thereby, to make solving the direct and inverse kinetic problems

easier. For example, let us consider a reaction scheme:

Aþ B����! ����
k1

k2

C;

Cþ C����! ����
k3

k4

D:

Let us develop a mathematical model for this reaction in the form of right parts

of the overall differential equation system:

Fig. 2.3 Developing the mathematical model using the Maple suits
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�1 1 1 0

1 1 �1 0

0 0 �2 1

0 0 2 �1

0
BB@

1
CCA

T

�
k1CACB

k2CC

k3CC
2

k4CD

0
BB@

1
CCA¼

�k1CACBþ k2CC

�k1CACBþ k2CC

�k1CACB� k2CC� 2k3CC
2þ 2k4CD

k3CC
2� k4CD

0
BB@

1
CCA:

If to calculate the stoichiometric matrix rank (calculation of a rank in Mathcad

and Maple is implemented by means of the rank function), it will appear that it is

equal to two. This means that it is possible to leave only two differential equations

without prejudice to kinetic description of the mathematical model. Let us leave the

equations describing a concentration change of substances C and D:

dCC dt ¼ �k1CACB � k2CC � 2k3CC
2 þ 2k4CD

�
dCD dt ¼ k3CC

2 � k4CD

��
:

However, as we can see, the current concentrations of reactants A and B appear

in one of the equations entering the obtained system. It is necessary to express them

in terms of the current concentration of reactants C and D, otherwise it will be

impossible to solve the equation. Such replacement can be performed using main

balance relationships for complex reactions. Since we consider the process which

occurs in a closed system, according to the mass conservation law we can write

X
i

mi0 ¼
X
i

mi

where mi0 and mi are initial and current masses of the ith component, respectively.

In turn, under isochoric conditions these masses are connected with initial and

current concentrations Ci0 and Ci by

mi0 ¼ Ci0Mi; mi ¼ CiMi;

where Mi is a molar mass of the ith substance taking part in a reaction. Then an

equation of system material balance can be written in a matrix form as

a �M ¼ 0

where M is a vector of molar masses and 0 is a zero vector.

Figure 2.4 shows the Mathcad document intended for simplifying the calcula-

tions while developing the reduced system of the differential equations. Performing

the elementary symbolic transformations of the vectors and matrices involving the

enumerated balance relationships allows to write the equation system in the final

form:

dCC dt ¼ �k1 CA0
� CC � 2CDð Þ CB0

� CC � 2CDð Þ � k2CC � 2k3CC
2 þ 2k4CD

�
dCD dt ¼ k3CC

2 � k4CD

��
:
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Thus, for multi-step reactions which involve a large number of reactants and

products, corresponding mathematical models can be quite awkward. In most cases,

it is not necessary to have a system of N equations for modeling N kinetic curves.

Fulfillment of a condition rank(M) < N means that some substances entering a

general kinetic scheme can be not excluded from an initial model at all, since their

kinetic curves can be calculated on the basis of information about a time-dependent

concentration behaviour of other key components which have not been excluded

from an overall equation system.

Fig. 2.4 Developing the reduced mathematical model
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2.2 The Classical Matrix Method for Solving the Direct

Kinetic Problem

The direct problem of chemical kinetics always has an analytical solution if a

reaction mathematical model is a linear system of ordinary first-order differential

equations. Sequences of elementary first-order kinetic steps, including ones com-

plicated with reversible and competitive steps, correspond to such mathematical

models. Let us mark off the classical matrix method from analytical methods of

solving such ODE systems.

For example, suppose a kinetic scheme of a consecutive-competitive reaction

with a reversible step

B �k1 A �!k2 C����! ����
k3

k4

D:

The mathematical model corresponding to the above scheme is

d

dt

CAðtÞ
CBðtÞ
CCðtÞ
CDðtÞ

0
BB@

1
CCA ¼

�1 1 0 0

�1 0 1 0

0 0 �1 1

0 0 1 �1

0
BB@

1
CCA

T
k1CAðtÞ
k2CAðtÞ
k3CCðtÞ
k4CDðtÞ

0
BB@

1
CCA

¼
� k1 þ k2ð ÞCAðtÞ

k1CAðtÞ
k2CAðtÞ � k3CCðtÞ þ k4CDðtÞ

k3CCðtÞ � k4CDðtÞ

0
BB@

1
CCA:

Let us rewrite the vector of the right parts of the system as

� k1 þ k2ð ÞCAðtÞ þ 0 � CBðtÞ þ 0 � CCðtÞ þ 0 � CDðtÞ
k1CAðtÞ þ 0 � CBðtÞ þ 0 � CCðtÞ þ 0 � CDðtÞ
k2CAðtÞ þ 0 � CBðtÞ � k3CCðtÞ þ k4CDðtÞ

0 � CAðtÞ þ 0 � CBðtÞ þ k3 � CCðtÞ � k4CDðtÞ

0
BB@

1
CCA:

Let us form a rate constant matrix k of the constant rates and their combinations

put before the concentrations

� k1 þ k2ð Þ 0 0 0

k1 0 0 0

k2 0 �k3 k4
0 0 k3 �k4

0
BB@

1
CCA:

It is easy to make sure that multiplication of the matrix k and the vector of

current concentrations also yields the vector of the right parts of the system
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� k1þ k2ð Þ 0 0 0

k1 0 0 0

k2 0 �k3 k4
0 0 k3 �k4

0
BB@

1
CCA �

CAðtÞ
CBðtÞ
CCðtÞ
CDðtÞ

0
BB@

1
CCA¼

� k1þ k2ð ÞCAðtÞ
k1CAðtÞ

k2CAðtÞ � k3CCðtÞ þ k4CDðtÞ
k3CCðtÞ � k4CDðtÞ

0
BB@

1
CCA:

Therefore,

d

dt
CðtÞ ¼ kCðtÞ: (2.2)

Equation (2.2), as (2.1), is a matrix form of a kinetic equation of a multi-step

reaction. One should pay attention that a rate constant matrix always is a square

matrix. A solution of (2.2) is written as

CðtÞ ¼ exp kt
� �

C0;

where C0 is a vector of substance initial concentrations. However, a problem of

calculating a matrix expðktÞ arises here. For the purpose of solving it, matrix

algebra introduces the notions of an eigenvalue vector of a matrix and an eigenvec-
tor of a matrix. It is considered that a matrix k has an eigenvector x and a

corresponding eigenvalue l, if the condition

k � x ih i ¼ li � x ih i; (2.3)

is met. Here: li is the ith element of an eigenvalues vector l, x ih i is the ith column of

a matrix of eigenvectors.

Thereby, each column of a matrix x corresponds to a quite definite eigenvalue of
a matrix k. Matrix algebra involves the notions of eigenvalues and eigenvectors to

prove that

exp kt
� �

¼ x � exp Lt
� �

� x�1:

In the last relationship, L is a diagonal matrix, whose main diagonal elements

are ones of an eigenvalue vector l. Respectively, expðLtÞ also is a diagonal matrix

exp Lt
� �

¼
exp l0tð Þ 0 0 :::

0 exp l1tð Þ 0 :::
0 0 exp l2tð Þ :::
::: ::: ::: :::

2
664

3
775:

Taking this into account, the end form of the differential equation system

solution is

CðtÞ ¼ x exp Lt
� �

x�1C0:
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Consequently, seeking analytical expressions for current concentrations of all

reactants involved in a multi-step reaction is reduced to formation of matrices x, L,
and a vector of initial concentrations C0 and their multiplication in the above-stated

order. Note that the multiplication order is very important since, in the general case,

a product of matrices is not commutative.

Figure 2.5 demonstrates the Mathcad document designed to form all the vectors

and matrices necessary for solving the direct kinetic problem. The built-in function

eigenvals should be used to find eigenvalues of a constant rate matrix. A matrix

of eigenvectors is calculated with the help of eigenvecs.

Fig. 2.5 Solving the direct kinetic problem by the matrix method: forming the necessary matrices
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Note an important peculiarity of eigenvecs. Strictly speaking, its main

destination in the Mathcad environment is symbolic but not numerical calculations.

In the symbolic calculation mode, an eigenvector matrix is calculated but columns

in this matrix are displayed in an arbitrary order. With each new reference to this

function we get matrices with different sequence of columns in them. For this

reason, it is necessary to check each time whether the ith column of an eigenvector

matrix corresponds to the ith position of an eigenvalues vector. Such check should

be performed by multiplication of a rate constant matrix and a chosen column of a

matrix x and comparison of an obtained result with a result of multiplication of a

chosen element of eigenvalue vector and the same column.

A chosen column vector of an eigenvector matrix will correspond to a chosen

element of an eigenvalue vector only if equality (2.3) is fulfilled. After a performed

check, a user will probably have to sort an eigenvector matrix by himself by

rearranging columns in order of correspondence.

The final stage of the calculations resulting in the vector of the differential

equation system solution is illustrated in Fig. 2.6.

With the help of obtained analytical expressions it is possible to draw curves for

different substances provided concrete numerical values of their initial concentra-

tion as well as values of rate constants of separate steps are given.

Let us make another one remark concerning working of eigenvecs in

Mathcad. A user can note that this function works as if in a different way in

different versions of the package yielding, at first sight, different eigenvector

matrices. But in reality, there is no contradiction: it is considered in linear algebra

that a vector proportional to an eigenvector is also an eigenvector. This becomes

obvious when carefully analyzing relationship (2.3). Eigenvector matrices obtained

by means of symbolic calculations in the Mathcad 11 environment look, as a rule,

Fig. 2.6 Calculating the vector of the substance current concentrations
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very awkward and can be simplified by multiplying their separate columns by a

definite constant. But a user will have to perform such simplification by himself.

The versions 13 and 14, in which columns of an eigenvector matrix are displayed in

a maximally simplified form, are free from this disadvantage.

All the enumerated stages of the matrix solution of an ODE system can be, of

course, also realized by the Maple suits. However, provided there is the function

dsolve which copes with linear systems without difficulty, using of the classical

matrix method is unnecessary.

2.3 The Laplace Transform in Kinetic Calculations

2.3.1 Brief Notes from Operational Calculus

The Laplace transformation is one of central notions of operational calculus. The
most important application of the latter is analytical seeking of general and partic-

ular solutions of some types of differential equations and systems, including ones

containing partial derivatives.

In operatonal calculus, a function F(s) determined by the equality:

FðsÞ ¼
ð1
0

e�stf ðtÞdt; (2.4)

where s is a positive real number or a complex number with a positive real part, is

assigned to a real function f(t) determined at t � 0.1 A function f(t) is named an

original function or inverse transform and F(s) is a Laplace transform. Transfer
from an original function f(x) to a function F(x) according to (2.4) is named the

direct Laplace transform. Respectively, transformation of F(x) in an original func-

tion is named the inverse Laplace transform and performed according to the formula

f ðtÞ ¼ 1

2pi

ðgþi1

g�i1
estFðsÞds: (2.5)

The method of solving linear differential equations and systems using the Laplace

transform is named operational. The point of the method is that functions and their

derivatives entering differential equations (original functions) are transformed into

1The restriction t � 0 does not imply by any means automatic restriction of a class of problems

which can be solved using the Laplace transform. In the vast majority of dynamic models, an

independent variable t is time. System behaviour at “negative” time values makes no difference

to us.
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Laplace transforms according to formula (2.4). As a result of such transform, source

differential equations of original functions are represented in an operational form. It is

quite important that an algebraic equation of Laplace transforms corresponds to a

separate linear differential equation of original functions. In fact, the Laplace trans-

form allows to replace the operation of differentiating with multiplication. Next, an

analytical solution of a modified equation (an operator solution) is sought and sub-

jected to the inverse Laplace transform, with definite rules being followed (formula

(2.5)), thus yielding a solution of a source differential equation or an ODE system.

In the “precomputer” age the above-stated sequence of operations was per-

formed, as a rule, using special tables of original functions and Laplace transforms.

Modern mathematical packages, including Mathcad and Maple, are equipped with

corresponding tools to perform the direct and inverse Laplace transforms.

In the Mathcad environment, the direct Laplace transform of an original function

is taken using either the command menu Symbolics|Transform|
Laplace or the symbolic editor panel. An argument name is obligatorily indi-

cated after calling the keyword laplace. When the inverse transform is being

performed, the menu entry Symbolics|Transform|InverseLaplace
or the operator invlaplace in the symbolic commands pallet can be used. In

the last case a name of a Laplace transform is indicated. An example of performing

the stated operations is given in Fig. 2.7.

Fig. 2.7 The Laplace transformation in Mathcad
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To learn only the most important rules of operational calculus related to proper-

ties of original functions and Laplace tramsforms is enough to sucsessfully solve

many kinetic problems. These properties are following:

l Homogeneity property. If a Laplace tramsform F(s) corresponds to a function

f(t), then at a given real or complex constant k a Laplace tramsform kF(s)
corresponds to a function kf(t);

l Linear property. A linear combination of Laplace tramsforms corresponds to a

linear combination of original functions.

These simple rules are illustrated in Fig. 2.7.2 The examples of applying the

Laplace transform to the derivatives of the original functions are also represented

here. As one can see, the transform is reduced to replacement of the differentiation

operator with the factor containing the argument s. In addition, the expression of

the Laplas tramsform contains the values of the function and its derivatives at a zero

point x(0), x’(0), . . . x(n)(0), i.e. the initial conditions for the source

differential equation.3

Let us consider an example of using the operator method for solving a differential

equation describing a concentration change of an intermediate during a first-order

consecutive reaction (Fig. 2.8). The original function here is the intermediate current

concentration CB(t). A use of the Mathcad operator laplace leads to the

Laplace transform of this function in the form laplace(CB(t),t,s). Pay
attention to the result of the transform of the derivative CB

’(t). Besides the

Fig. 2.8 Applying the operator method to derivation of the kinetic curve equation for the

intermediate of the consecutive reaction

2Many of the documents represented in this chapter do not work in Mathcad 14. While embedding

the symbolic kernel MuPAD, developers did not notice that the command laplace do not

carry out its tasks to the full extent. By the time this book is published, this mistake might be

already corrected.
3Instead of initial conditions, arbitrary constants C1, C2, . . . Cn can be specified. Then it is obvious

that the operator method is also applicable to seeking a general solution of an equation.
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Laplace transform, it also contains the value of CB(0), i.e. the initial condition for
solving the problem. After that, the form laplace(CB(t),t,s) is replaced

with the variable LB and the resulting algebraic equation is solved for this variable.

Next, the operator solution is subjected to the inverse Laplace transform (the

operator invlaplace,s). The final expression defines the analytical form of

the function CB(t).
The same sequence of the operations can be performed by the Maple suites. But

in contrast to Mathcad, where a user has to find a Laplace transform and recover an

original function himself, the Maple’s operator method for solving an ODE is

almost completely automated. If it is necessary to find a solution by means of

mathematical apparatus of operational calculus, it is enough to specify an additional

option in the body of dsolve in the form of the expression method ¼
laplace. Let us illustrate this for seeking the general solution of the linear

second-order differential equation

yðxÞ ¼ aþ d2yðxÞ
dx2

;

in Maple.

At first sight, this equation seems to be too abstract and not related to chemical

kinetics. However, we will need it in the below problems. Thus, we will show

below (Chap. 5) that more complicated relationships describing, in particular,

diffusion and heat transfer processes can be reduced to an equation of this type.

In the Maple document given in Fig. 2.9 the considered equation is solved twice.

First, dsolve uses “classical” built-in suits for seeking an analytical solution by

default, and then the same equation is solved by means of the Laplace transform

(the option method ¼ laplace). In addition, the document uses some other

functions. Thus, the command odeadvisor diagnoses the differential equation

and ascertains which type of equations it belongs to. In the both cases, the function

infolevel[dsolve] helps to observe the process of solving. The both func-

tions enter the command library DEtools. To link the library of functions and

commands of integral transforms (inttrans) is necessary to implement the

operator method. Though the form of visualization of the final result is different

in the each case, checking the solution Sol of the equation eq with the help of the

command odetest(Sol,eq) shows that the both forms are equivalent.

2.3.2 Derivation of Kinetic Equations for Linear Sequences
of First-Order Reactions

For this type of reactions, ideology of the operator method in respect to solving

systems of linear differential equations remains completely the same but in this

case, when applying the Laplace transform, we obtain not a separate algebraic
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equation but a system of linear equations which can be solved either by lsolve or

using the solving block GIVEN/FIND.
Thus, Fig. 2.10 represents the Mathcad document meant for solving the ODE

system using by the operator method. The system describes kinetics of the first-

order consecutive reaction with the reversible second step

A����!k1 B����! ����
k2

k3

C;

at the initial concentration of the source reactant CA0
. The Laplace transform is

applied here to the each equation of the source system and then the system of the

algebraic equations is formed of the obtained Laplace transforms. Next, its operator

solution is subjected to the inverse Laplace transform.

Note that an operator solution of an equation system using the symbolic Mathcad

suits is always represented as a vector. The symbolic command invlaplace

Fig. 2.9 The operator method in Maple
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cannot be applied to a whole vector on the stage of subsequent transfer to original

functions. Each vector element should be treated separately.

Certain inconveniencies of realization of the operator method in Mathcad are

connected with an order of display of symbolic results adopted in this package.

When recovering original functions corresponding to found Laplace transforms, a

user often has to deal with very awkward expressions displayed in one line and using

symbolic commands like simplify or collect does not enable to represent a

result in a more compact form. Here, introducing new parameters equal to some

combinations of rate constants can help significantly. Thus, for the purpose of

obtaining more compact expressions, the operator solution in Fig. 2.10 is somehow

modified by introducing the new constants g1 and g2 satisfying the equalities

g1 þ g2 ¼ k1 þ k2 þ k3; g1g2 ¼ k1 k2 þ k3ð Þ:

The kinetic curves of the substances taking part in the reaction plotted in

Fig. 2.11 reveal a significant difference from the analogous dependencies for the

Fig. 2.10 Solving the system of the linear differential equations by means of the operator method
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irreversible consecutive reaction. This difference consists in stabilization of con-

centrations of the intermediate and the end product with time owing to establishing

the equilibrium of the second and third steps.

The intermediate concentration passes through a maximum, as in the case of the

irreversible consecutive reaction. Respectively, the end product curve has an

inflection. However, the abscissa of the maximum point tmax (in this case it coin-

cides with the abscissa of the reflection point) is now determined by a relationship

of the rate constants of all the elementary stages. It is easy to make sure that:

tmax ¼
ln k1�k3

k2

� �
k1 � k2 � k3

:

Thereby, in the symbolic commands laplace, invlaplace of the Math-

cad package we have one more quite reliable instrument for solving the direct

problem of chemical kinetics for multi-step reactions described by systems of linear

differential equations. The examples of the kinetic equations for some reactions are

represented in Table 2.1. Naturally, the classical matrix method can be used to

derive these equations. In Maple, capabilities of dsolve are enough for this.

Fig. 2.11 Kinetics of the two-step first-order consecutive reaction with the reversible second step
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Table 2.1 Analytical solutions of the direct problem for some reaction systems with elementary

first-order steps

Reaction schemes and initial

concentrations

Kinetic curve equations

1 2

1. The irreversible consecutive reaction

A���!k1 B���!k2 C
Að0Þ ¼ A0 Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0e
�k1 t; BðtÞ ¼ A0k1

k2 � k1
e�k1 t � e�k2 t
� 	

;

CðtÞ ¼ A0 1� k2
k2 � k1

e�k1 t � k1
k1 � k2

e�k2 t

 �

2. The consecutive reaction with the second step being reversible

A ���!k1 B
k2����! ����
k3

C

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0e
�k1 t

BðtÞ ¼ k1A0

k3
g1g2
þ g2 � k3
g1 g1 � g2ð Þ e

�g2 t þ k3 � g1
g1 g1 � g2ð Þ e

�g1 t
� �

;

CðtÞ ¼ k1k2A0

1

g1g2
þ 1

g1 g1 � g2ð Þ e
�g1 t � 1

g2 g1 � g2ð Þ e
�g2 t

� �
;

where g1g2 ¼ k1 k2 þ k3ð Þ, g1 þ g2 ¼ k1 þ k2 þ k3

3. The consecutive reaction with the first step being reversible

A����! ����
k1

k2

B���!k3 C

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

g2 � g1
k2 þ k3 � g1ð Þe�g1 t � k2 þ k3 � g2ð Þe�g2 t½ �

BðtÞ ¼ A0k1
g2 � g1

e�g1 t � e�g2 tð Þ;

CðtÞ ¼ A0 1þ k1k3
g1 g1 � g2ð Þ e

�g1 t þ k1k3
g2 g2 � g1ð Þ e

�g2 t
� �

where g1g2 ¼ k1k3; g1 þ g2 ¼ k1 þ k2 þ k3

4. The competitive reaction with a reversible step

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

k2 � g1
g2 � g1

e�g1 t � k2 � g2
g2 � g1

e�g2 t

 �

BðtÞ ¼ k1A0

g2 � g1
e�g1 t � e�g2 tð Þ;

CðtÞ ¼ A0 1þ k3 k2 � g1ð Þ
g1 g1 � g2ð Þ e

�g1 t þ k3 k2 � g2ð Þ
g2 g2 � g1ð Þ e

�g2 t
� �

g1g2 ¼ k2k3 g1 þ g2 ¼ k1 þ k2 þ k3

5. The consecutive two-step reaction with both steps being reversible

A����! ����
k1

k2

B����! ����
k3

k4

C

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

k2k4
g1g2
� k1 g1 � k3 � k4ð Þ

g1 g2 � g1ð Þ e�g1 t � k1 k3 þ k4 � g2ð Þ
g2 g2 � g1ð Þ e�g2 t

� �

BðtÞ ¼ A0k1
k4
g1g2
þ k4 � g1
g1 g2 � g1ð Þ e

�g1 t þ k4 � g2
g2 g2 � g1ð Þ e

�g2 t
� �

CðtÞ ¼ A0k1k3
1

g1g2
þ 1

g1 g2 � g1ð Þ e
�g1 t � 1

g2 g2 � g1ð Þ e
�g2 t

� �
,

where g1g2 ¼ k2k4 þ k1k3 þ k1k4;
g1 þ g2 ¼ k1 þ k2 þ k3 þ k4

(continued)
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2.3.3 Transient Regime in a System of Flow Reactors

Heretofore, the kinetic models of the reactions proceeding in closed systems have

been considered. In such systems material exchange with surroundings is excluded

(batch reactors). In practice, many reactions are carried out in open systems under a

regime of continuous feed of reactants to a reactor and withdrawal of formed

Table 2.1 (continued)

Reaction schemes and initial

concentrations

Kinetic curve equations

6. The consecutive-competitive reaction with a reversible step

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

g2 � g1
k2 þ k3 � g1ð Þe�g1 t � k2 þ k3 � g2ð Þe�g2 t½ �;

BðtÞ ¼ k1A0

g2 � g1
e�g1 t � e�g2 tð Þ;

CðtÞ ¼ A0 1� g2 � k4
g2 � g1

e�g1 t � g1 þ k4
g1 � g2

e�g2 t

 �

,

where g1g2 ¼ k1k3 þ k2k4 þ k3k4;
g1 þ g2 ¼ k1 þ k2 þ k3 þ k4

7. The consecutive-competitive reaction with two steps being reversible

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

k2k5
g1g2
� g22 � eg2 þ k2k5

g2 g1 � g2ð Þ e�g2 t � g21 � eg1 þ k2k5
g1 g2 � g1ð Þ e�g1 t


 �

BðtÞ ¼ A0

�

g1g2
� k1g2 � �

g2 g2 � g1ð Þ e
�g2 t � k1g1 � �

g1 g1 � g2ð Þ e
�g1 t


 �
;

CðtÞ ¼ A0

d
g1g2
� k3g2 � d
g2 g2 � g1ð Þ e

�g2 t � k3g1 � d
g1 g1 � g2ð Þ e

�g1 t

 �

;

гдeg1 þ g2 ¼ k1 þ k2 þ k3 þ k4 þ k5;
g1g2 ¼ k2k3 þ k1k4 þ k2k5 þ k3k5 þ k3k4 þ k1k5;

d ¼ g1g2 � k2k5 � k3k5 � k1k5;
� ¼ g1g2 � k2k3 � k1k4 � k2k5 � k3k4;
e ¼ g1 þ g2 � k1 � k3

8. The consecutive two-step reaction with three steps being reversible

Að0Þ ¼ A0; Bð0Þ ¼ 0;

Cð0Þ ¼ 0

AðtÞ ¼ A0

b
g1g2
þ



ag1 � g1

2 � b
g2 � g1

e�g1 tþ g22 � ag2 þ b
g2 � g1

e�g1 tÞ

BðtÞ ¼ A0

e
g1g2
þ k1g1 � e

g2 � g1
e�g1 t þ e� k1g2

g2 � g1
e�g2 t


 �

CðtÞ ¼ A0

d
g1g2
þ k5g1 � d

g2 � g1
e�g1 t þ d� k5g2

g2 � g1
e�g2 t


 �
,

where a ¼ k2 þ k3 þ k4 þ k6; b ¼ k2k4 þ k2k6 þ k3k6;
e ¼ k1k4 þ k1k6 þ k4k5; d ¼ k1k3 þ k2k5 þ k3k5;

g1g2 ¼ bþ eþ d; g1 þ g2 ¼ aþ k1 þ k5
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products from it. There are two continuous reactor models: a batch reactor and a

plug flow one.

Let us consider a stirred tank reactor (STR). In such reactor, a reaction mixture is

stirred in the way that current concentrations of reactants taking part in a reaction

are the same at any time moment in any point of reaction space. Let the first-order

reaction A���!k B proceed in the STR. The solution of reactant A with a concen-

tration of C0 is continuously fed to the reactor inlet with a rate of v l s�1. The
reaction mixture is withdrawn from the reactor with the same rate. Under these

conditions, the reaction space volume remains constant and is Vl. The change of the
reactant quantity per unit of time is:

dnAðtÞ
dt
¼ vC0 � vCAðtÞ � kCAðtÞV: (2.6)

Dividing the both parts of the equation by V yields the mathematical model of

the STR in the form:

dCAðtÞ
dt

¼ �kCAðtÞ þ v

V
C0 � CAðtÞð Þ: (2.7)

Thus, in contrast to the kinetic equation describing the first-order reaction in a

batch reactor, the last equation contains the summand which characterizes geomet-

rical dimensions of the reactor and the rate of substance feed to the reactor and its

withdrawal from it.

Solving (2.8) at the initial reactant concentration (Fig. 2.12) shows that the

current reactant concentration depends on the kinetic and macroscopic parameters

of the system in a complicated way,

CAðtÞ ¼ CA0

kV þ v
vþ kVe� kþv

Vð Þ th i
:

The graph zone represented in Fig. 2.12 shows that the kinetic curve of the

source reactant has a characteristic feature: in the course of time the concentration

becomes time-constant. We met the similar curve behaviour when analyzing

reversible reactions; however, in this case, stabilization of the concentration with

time is not related to establishing the chemical equilibrium state. In the case under

consideration, we have a steady-state regime of the process, a state when a reactant
loss because of proceeding a reaction is precisely compensated by its gain at the

expense of feed of new reactant portions to a reactor. The expression for the steady-

state concentration of substance A is easily reduced by equating the derivative in

(2.7) to zero

CAst
¼ CA0

v

kV þ v
:
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Let us now consider a cascade of three stirred tank reactors of volumes of V1, V2,

V3 and with current concentrations of C1, C2, C3, respectively. The scheme of the

reaction mixture flows for the each reactor is represented in Fig. 2.13.

The first reactor has two inlets, vC0 mol s�1 of reactant A are fed to the first one

from the outside and n1C2 mol s�1 enter the second one from reactor 2. For

substance A, the outlet matter flow of reactor 1 and the inlet matter flow of reactor

2 are equal to vþ v1ð ÞC1 mol s�1. The outlet matter flow of reactor 2 is

vþ v1ð ÞC2 mol s�1 and next is divided between two paths. Its part n1C2 mol s�1

returns into reactor 1 and vC2 mol s�1 is fed to the inlet of reactor 3. nC3 mol L�1 of
substance A is eventually withdrawn from the system. In connection with the above

and taking into account relationships (2.6) and (2.7), we can write the equations

describing the time-dependent loss of the reactant concentration in the each reactor

dn1ðtÞ dt= ¼ vC0 þ v1C2ðtÞ � vþ v1ð ÞC1ðtÞ � kC1ðtÞV1;

dn2ðtÞ dt= ¼ vþ v1ð ÞC1ðtÞ � vþ v1ð ÞC2ðtÞ � kC2ðtÞV2;

dn3ðtÞ dt= ¼ vC2ðtÞ � vC3ðtÞ � kC3ðtÞV3;

Fig. 2.12 The time dependence of the reactant concentration in the stirred tank reactor
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or

dC1ðtÞ
dt
¼ �kC1ðtÞ þ vC0 þ v1C2ðtÞ � vþ v1ð ÞC1ðtÞ

V1

;

dC2ðtÞ
dt
¼ �kC2ðtÞ þ vþ v1ð Þ C1ðtÞ � C2ðtÞ½ �

V2

;

dC3ðtÞ
dt
¼ �kC3ðtÞ þ v C2ðtÞ � C3ðtÞ½ �

V3

:

The obtained system of the linear differential equations can be solved by

applying the operational system apparatus.

Let us consider that before starting the reaction, the concentrations of A in the

each reactor are the same and equal to C0 mol L�1.Additionally, let us intentionally
complicate the conditions of the direct kinetic problem. Assume that in the each

reactor the reaction mixture has different temperature and this temperature

remains constant during the process (here, of course, we have to assume that new

portions of the solution immediately takes a given reactor temperature). Thus, this

means that the process is controlled by the different rate constants k1, k2, k3 in the

each reactor.

Figure 2.14 represents the part of the network variant of the Mathcad document

which allows to model different situations of a system behaviour at different values

of the input parameters, namely the rate constants k1, k2, k3, the reactor volumes

V1;V2;V3, and the feed rates of the reaction mixture v, v1. So as not to clutter the

document, constructions containing the Laplace transform are hidden from a user

(this approach completely corresponds to the sequence of operations shown in

Fig. 2.10). Only the elements of the vector of the operator solution as well as

recovering the source original functions corresponding to the Laplace transforms

are displayed in the workspace. The final result of the document is analytical

expressions for the concentration–time relationships for the each reactor as well

as the time dependencies of the degree of conversion of the source reactant in the

Fig. 2.13 The cascade of the stirred tank reactors
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each reactor. Thereby, a user has an opportunity to observe how a change of one

input parameter of another influences the degree of conversion and the time of

establishing a steady-state regime of operation of the reactors.

Since symbolic calculations occupy a significant part of the document, we should

recommend displaying numerical values in a rational form but not as floating point

Fig. 2.14 Modeling the transient regime in the system of three reactors
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numbers for obtaining more compact expressions. Otherwise, too long expressions

may be yielded what creates definite problems when printing a document. Finally,

the symbolic command convert,rational, which transforms an expression

in a rational form, can be used as shown in Fig. 2.14. Although, the last procedure is

not documented and can be used only in the Mathcad versions which use the Maple

symbolic kernel.

2.3.4 Kinetic Models in the Form of Equations Containing
Piecewise Continuous Functions

Unfortunately, in many cases, the Mathcad symbolic processor cannot operate with

functions determined using a program block. For example, an attempt to apply

laplace to a piecewise continuous function which has been defined using the

programming operators if and otherwise fails (Fig. 2.15). Meanwhile, such

functions can enter differential equations describing applying different kinds of

disturbances to a system under investigation (e.g., a sharp change of reactant feed to

a reactor inlet, a random or intentional change of thermal conditions of a reactor,

periodical injections of a medicine into an organism etc.). A head-on attempt of

applying the Laplace transform to such an expression remains unsuccessful, there-

fore modification of the expression using the Heaviside function is an effective

method. If a task consists in analytical solving a problem, a source piecewise

continuous function should be replaced with a linear combination of other func-

tions, with the Heaviside function FðtÞ obviously entering each summand of a new

compound function. This function vanishes at negative t values and is equal to unity
otherwise. Thus, Fig. 2.15 demonstrates a method of such transfer. The source

function f1(t) is replaced with the equivalent function f2(t) but a distinctive

feature of this new function is that symbolic commands can already be applied to it,

including the command of the integral Laplace transform.

Let us consider a real problem of solving an equation with a piecewise continuous

function. Suppose that substance A with the initial concentration 1 mol l�1 converts
into the end productB during a chemical reaction, with reactant B being unstable and

decomposing by the action of light to give the source substance A. If the reaction is

carried out in the dark, it proceeds without any complication and the rate of

decomposition of A is proportional to its current concentration. But if to expose

the reaction mixture to light, the system behaviour becomes more complicated:

decomposition of A is complicated by its accumulation at the expense of proceeding

the reverse process whose kinetic behaviour is determined by a light intensity.

Suppose that the reaction occurs in the dark during 0.5 min and next the system

is exposed to a light flux for 1.5 min. Then a light flux intensity is decreased by 75%

and maintained constant. The mathematical model of the overall process can be

then written in the differential equation form
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dCAðtÞ
dt

¼ �kCAðtÞ þ f ðtÞ;

where the function f ðtÞ is defined by specifying the expression

f ðtÞ ¼ F t� 1

2


 �
þ 4

5
F t� 2ð Þ:

This problem is solved in Fig. 2.16. As we can see, the behaviour of the kinetic curve

is quite complicated, however it is possible to obtain its analytical form in this case.

2.4 Approximate Methods of Chemical Kinetics

2.4.1 The Steady-State Concentration Method

Using of approximate methods of chemical kinetics is intended for, first of all,

simplifying mathematical models and, respectively, their analysis. The steady-state

Fig. 2.15 Replacing the source function with the linear combination of the functions
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concentration method is one of the most widespread approximations. This method

is applicable to describing multi-step reactions whose definite steps result in high-

reactivity intermediates. The condition of applying the method is a short life time of

intermediates compared to a time during which reaction mixture composition can

change noticeably (the Christiansen condition). It is assumed that time derivatives

of concentrations of active intermediates are equal to zero (the Bodenstein theo-

rem). Thereby, some differential equations of a system entering a mathematical

model can be replaced with algebraic ones. A kinetic analysis of a reaction

mechanism is considerably simplified in this case.

Let us consider a simple example to illustrate the point of the method. Let us have

the kinetic scheme of the consecutive reaction with the first step being reversible

Fig. 2.16 Solving the direct problem for the reaction complicated by the photochemical

conversion
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A����! ����
k1

k2

B���!k3 C: (2.8)

If to assume that the constant k3 � k1; the rate of intermediate consumption is

much higher than one of its formation. Substance B is an unstable intermediate,

therefore the principle of steady-state concentrations is applicable to it. Then we

obtain

dCBðtÞ=dt ¼ k1CAðtÞ � k2CBðtÞ � k3CBðtÞ ¼ 0;

hence

CBðtÞ ¼ k1
k2 þ k3

CAðtÞ:

It is easy to see that the rate of product C formation is then written in the form

rP ¼ k1k3
k2 þ k3

CAðtÞ: (2.9)

Let us carry out a check of the steady-state principle. For this purpose, let us

calculate the time dependence of the end product formation rate from the relation-

ships obtained by accurate solving the direct kinetic problem (see Table 2.1). Next,

let us compare the result with the calculations from obtained formula (2.9). The

corresponding plots represented in Fig. 2.17 show that the behaviour of the both

curves coincide after less than 0.5 s at given values of the rate constants satisfying

the condition k3 � k1. This indicates applicability of the steady-state concentration
method to the considered model of the consecutive reaction.

The steady-state concentration method played an important role in establishing

fundamental relationships of chemical kinetics. Earlier, it was noticed that a

number of monomolecular reactions involving gases have different orders with

respect to a source substance depending on a gas mixture pressure. Lindemann
assumed that the overall process of conversion of reactant A into end product P
consists of a number of steps, the first one being a bimolecular collision of A
molecules. Although this step does not result in a chemical conversion, it is

accompanied by redistribution of colliding molecule energy and leads to formation

of excited particles A* potentially capable to overcome an energy barrier

Aþ A���!k1 A� þ A:

This step is also called excitation. Excited molecules A� may either loose their

energy if colliding with nonexcited molecules (deexcitation)

A� þ A���!k2 Aþ A;
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or be converted into the end product

A����!k3 P:

Thereby, if particle A� is considered as an unstable intermediate, the Linde-

mann’s kinetic scheme can be analyzed in the steady-state approximation assuming

dA� dt � 0= . The results of this analysis are represened in Fig. 2.18.

In Fig. 2.18, the intermediate concentation is expressed in terms of the concen-

tration of nonexcited molecules A and substituted into the equation for the rate rP of
the third step leading to the end product. The analysis of the obtained expression

indicates two limiting cases. In the first one (a low pressure), the current concentra-

tions (or the partial pressures) of A are so small that the term k2A in the denominator

of the expression for rP can be neglected owing to meeting the condition k2A	 k3.
This suggests that product formation should obey relationships for a reaction having

an order of 2. If transferrring to a high pressure, on the contrary, k2A� k3. If
neglecting a k3 value, it should be concluded that we have a kinetic order of 2 for

these conditions. The drawn conclusions also have a physical interpretation. Under

condiditons of a low pressure, molecules are too far from each other that makes the

deexcitation step unlikely and the limiting step of the process is the excitation step.

If transferring to a high pressure, the nature of a limiting step changes. The process

rate is now determined by the third step, since waisting energy of excited particles is

Fig. 2.17 Checking applicability of the steady-state concentration method
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considerably facilitated under the conditions of small distances between molecules,

which have no time to react.

It should be noted that, despite the made assumptions, the Lindemann theory

qualitatively fits the experimental data predicting the change of the reaction order

with the pressure change.

The steady-state concentration method is widely used for an analysis of kinetic

mechanisms of complex reactions. In particular, this method plays an important

role in the chain reaction theory.

For example, a large number of theoretical kinetic models have been suggested for

describing ethane thermal cracking. Let us consider one of simplified mechanisms

ð1ÞC2H6���!k1 2CH3

;

ð2ÞCH3

 þ C2H6���!k2 CH4 þ C2H5


;

ð3ÞC2H5

 ���!k3 C2H4 þ H
;

ð4ÞC2H6 þ H
���!k4 C2H5

 þ H2;

ð5Þ 2C2H5

 ���!k5 C4H10;

ð6Þ 2C2H5

���!k6 C2H4 þ C2H6:

As one can see, formation of end products – ethylene, butylene, and hydrogen –

proceeds involving the intermediates – radicals CH3

, H
, C2H5


. Let us solve the
direct problem for this kinetic scheme in the steady-state approximation.

Firstly, it is necessary to derive the expressions for the intermediate steady-state

concentrations. For this purpose, let us form the stoichiometric matrix and the rate

vector and obtain the vector of right parts of the overall differential equation system

for the given kinetic mechanism (Fig. 2.19).

Fig. 2.18 The analysis of the monomolecular reaction mechanism
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The elements of the right part vector related to the rates of intermediate forma-

tion and consumption should be equated with zero and the obtained algebraic

equations should be solved for the steady-state concentrations of the radicals. As

a result, these operations (Fig. 2.19) yield

CCH�
3
¼ 2

k1
k2

;

CC2H�5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1
k5 þ k6

r ffiffiffiffiffiffiffiffiffiffiffi
C2H6

p
;

CH
 ¼ k3
k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

ðk5 þ k6ÞCC2H6

s
:

Next, the elements related to the stable reactants should be extracted from the

vector of the right parts of the differential equations and the intermediate concen-

trations, which enter the equations, should be replaced with the obtained expres-

sions. This stage of the symbolic evaluation is shown in Fig. 2.20. Thereby, by

applying the steady-state concentration method, we obtained the reduced system of

the differential equations describing the time-dependent concentration decrease or

increase of the stable reactants.

Thereby, each of the equations entering the system has the form

d

dt
CC2H6

ðtÞ ¼ �k1 3k5 þ 2k6
k5 þ k6

CC2H6
ðtÞ �

ffiffiffiffiffi
k1
p

k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5 þ k6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC2H6

ðtÞ
q

;

d

dt
CCH4
ðtÞ ¼ 2k1CC2H6

ðtÞ;

d

dt
CC2H4

ðtÞ ¼
ffiffiffiffiffi
k1
p

k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5 þ k6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC2H6

ðtÞ
q

þ k1k6
CC2H6

ðtÞ
k5 þ k6

;

d

dt
CH

2
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

k5 þ k6

r
k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC2H6

ðtÞ
q

;

d

dt
CC4H10

ðtÞ ¼ k1k5
k5 þ k6

CC2H6
ðtÞ:

It is noticeable that only one function, CC2H6
ðtÞ, enters the right part of the

system, i.e. the current concentrations of methane, ethylene, hydrogen, and butyl-

ene are determined only by a value of the ethane current concentration.

The analytical solving the system at the initial condition CC2H6
ð0Þ ¼ CC2H6 0 can

be easily realized in Maple. Figure 2.21 demonstrates the worksheet part where the
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Fig. 2.19 The symbolic evaluation of the intermediate steady-state concentrations
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curve equation for ethane is derived by means of dsolve. So as to avoid

excessively awkward constructions, the following symbols are introduced

k1
3k5 þ 2k6
k5 þ k6

¼ a;

ffiffiffiffiffi
k1
p � k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5 þ k6
p ¼ b:

The expression for the current ethane concentration is next substituted into the rest

of the equations of the reduced ODE system and their solution yields expressions

for the last of the stable substances taking part in the overall process

CCH4
ðtÞ ¼ 2k1

ðt
0

CC2H6
ðuÞdu;

Fig. 2.20 Deriving the right part of the reduced differential equation system for ethane cracking

Fig. 2.21 Derivation of the equation for the source reactant kinetic curve
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CC2H4
ðtÞ ¼ b

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC2H6

ðuÞ
q

þ k6
k23

CC2H6
ðuÞ


 �
du;

CH2
ðtÞ ¼ b

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC2H6

ðuÞ
q

du;

CC4H10
ðtÞ ¼ b2k5

k23

ðt
0

CC2H6
ðuÞdu:

Here, u is a auxiliary value. Now, it is possible to evaluate the kinetic curves for
all the reactants. Of course, information about the numerical values of the rate

constants of all the steps are needed for this purpose. Such information can be found

in reference literature but to use kinetic databases available in the global network is

the simplest. A quite reliable source is the database of National Institute of

Standards and Technology (http://www.kinetics.nist.gov). After a short search,

the temperature dependencies of the constants k1 � k4 are found,

k1 ¼ 4:26� 1016e�
44579
T ;

k2 ¼ 1:65� 109
T

298


 �4:25

e
�3890

T ;

k3 ¼ 8:85� 1012e�
19469
T ;

k4 ¼ 1:71� 1012
T

298


 �2:32

e�
3414
T :

The rate constants for ethyl radical recombination in steps (5) and (6) do not

depend on temperature,

k5 ¼ 1:15� 1013; k6 ¼ 1:45� 1012:

Finally, Fig. 2.22 illustrates the kinetic curve behaviour for the source reactant

and the end product of ethane thermal decomposition. The calculations assume that

the process proceeds at a temperature of 1,100 K and at an initial pressure of the gas

mixture 2 atm. One should remember that, in this case, it is considered an approxi-

mate solution obtained in the framework of the approximation about a steady-state

course of the process.
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2.4.2 The Quasi-Equilibrium Approximation: Enzymatic
Reaction Kinetics

Let us refer again to kinetic scheme (2.8) describing the consecutive reaction with

the first step being reversible. If the equilibrium described by the constants k1 and k2
is established quickly, i.e. the step resulting in the end product is slow, the quasi-

equilibrium principle is applicable in this case. According to this principle, the

concentration of intermediate B practically does not differ from its equilibrium

value owing to the hard-to-disturb equilibrium and can be expressed in terms of the

ratio of the constants k1 and k2

K ¼ k1 k2= ¼ CB=CA:

Consequently,

CB ¼ k1
k2

CA;

and the rate of product C formation is given by

rC ¼ k2CB ¼ k1CA:

Thus, the quasi-equilibrium principle should be obeyed provided the condition

k3 	 k2 is met. The corresponding calculation (Fig. 2.23) confirms this assumption.

The quasi-equilibrium principle gained a widespread practical use in enzyme
kinetics, a branch of chemical kinetics describing catalytic reactions involving

Fig. 2.22 The kinetic curves of the stable participants of the ethane cracking process
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enzymes. Enzymes are biological catalysts, protein molecules, as a rule. This is a

particular type of reactions characterized by high enzyme effectiveness with respect

to catalyzed processes and high selectivity of catalysts. Knowledge of enzyme

reaction kinetics is necessary for understanding processes occurring into living

organisms.

The scheme for the simplest enzyme reaction is

Eþ S����! ����
k1

k�1
ES���!k2 Pþ E:

Here, E is an enzyme, S is a reactant (a substrate), P is a reaction product, ES is

an enzyme–substrate complex. The process provides for reversible ES formation

followed by its decay into the reaction product with simultaneous enzyme regener-

ation. Provided the step of product formation is slow (k2 	 k�1), the reaction

kinetics can be described in the framework of the quasi-equilibrium principle.

Thus, the quasi-equilibrium concentration CES of the enzyme–substrate complex

is related to the rate constants k1 and k�1 as well as to the concentrations of the

enzyme CE and the substrate CS by

k1
k�1
¼ CECS

CES
:

Fig. 2.23 Checking the quasi-equilibrium principle
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The concentration CES can be deduced from this relationship and substituted into

the equation for the formation rate of end product P

rP ¼ k2CES:

The enzyme fraction bound in the complex cannot be found experimentally,

therefore, the following calculations use the material balance equation

CES þ CE ¼ CE0
;

where CE0
is an overall enzyme concentration. With the help of the last three

relationships, one can obtain the known Michaelis–Menten equation

rP ¼ k2CE0
CS

KM þ CS
: (2.10)

Derivation of the Michaelis–Menten equation using the suits of the Mathcad

symbolic redactor is given in Fig. 2.24. Here, KM is the Michaelis constant whose
physical meaning corresponds to the dissociation constant for the enzyme–substrate

complex, KM ¼ k�1=k1.
Interpretation of (2.10) leads to quite interesting conclusions. Thus, if the

substrate concentration is low KM � CSð Þ, the equation reduces to the form

rP � k2CE0
CS

KM

On the contrary, at high substrate concentrations KM 	 CS and

rP � k2CE0
:

Thereby, at low S concentrations the reaction has an order of 1 with respect to the
substrate. When transferring to high concentrations, the reaction rate stops depend-

ing on a concentration, i.e. the reaction changes its order into zero. The high

substrate concentrations favor the maximum reaction rate

rmax ¼ k2CE0
: (2.11)

Figure 2.24 illustrates the general behaviour of the reaction rate vs. the current
substrate concentration.

Taking into account expression (2.11), (2.10) can be rewritten in the following

forms

1

rP
¼ 1

rmax

þ KM

rmax

� 1
CS

; (2.12)
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Fig. 2.24 Derivation of the kinetic equations for the enzyme reaction
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rP ¼ rmax � KM
rP
CS

: (2.13)

Consequently, the curve of a rate vs. a concentration is linearized on rP
�1� CS

�1

coordinates (Lineweaver–Burk coordinates) or on rP � rP=CS coordinates. The both

types of coordinates can be used when treating experimental data for solving the

inverse kinetic problem. The method of initial rates, when initial reaction rates are

measured at different initial substrate concentrations, is used for this purpose.

72 2 Multi-Step Reactions: The Methods for Analytical Solving the Direct Problem



http://www.springer.com/978-3-7091-0530-6


	Chapter 2: Multi-Step Reactions: The Methods for Analytical Solving the Direct Problem
	2.1 Developing a Mathematical Model of a Reaction
	2.2 The Classical Matrix Method for Solving the Direct Kinetic Problem
	2.3 The Laplace Transform in Kinetic Calculations
	2.3.1 Brief Notes from Operational Calculus
	2.3.2 Derivation of Kinetic Equations for Linear Sequences of First-Order Reactions
	2.3.3 Transient Regime in a System of Flow Reactors
	2.3.4 Kinetic Models in the Form of Equations Containing Piecewise Continuous Functions

	2.4 Approximate Methods of Chemical Kinetics
	2.4.1 The Steady-State Concentration Method
	2.4.2 The Quasi-Equilibrium Approximation: Enzymatic Reaction Kinetics



