> with(LinearAlgebra):

> K := Matrix([[-k1-k2,0,0,0],[+k1,0,0,0],[+k2,0,-k3,+k4],[0,0,+k3,-k4]]);

K := _rtable[151096968]

> E := Eigenvectors(K);

E := _rtable[1112024], _rtable[994660]

> v := E[1];

v := _rtable[1112024]

> X := E[2];

X := _rtable[994660]

> L := DiagonalMatrix([exp(v[1]*t),exp(v[2]*t),exp(v[3]*t),exp(v[4]*t)]);

L := _rtable[1723152]

> c0 := Vector ([Ao,0,0,0]);

c0 := _rtable[1237588]

> ct := X . L . MatrixInverse(X) . c0;

ct := _rtable[149725012]

> ctA := ct[1];

ctA := exp((-k1-k2)*t)*Ao

> ctB := ct[2];

ctB := (k1/(k1+k2)-k1*exp((-k1-k2)*t)/(k1+k2))*Ao

> ctC := ct[3];

ctC := (exp((-k3-k4)*t)*k3*k2/((-k3-k4+k1+k2)*(k3+k...

> ctD := ct[4];

ctD := (-exp((-k3-k4)*t)*k3*k2/((-k3-k4+k1+k2)*(k3+...

>