Evaluation of covalent inhibition potency: From IC₅₀ to k_{inact}/K_I and beyond

Petr Kuzmič

BioKin Ltd.

26 Sep 2024

イロト イポト イヨト イヨ

- I. Foundations: Theory and practice in covalent inhibition kinetics
 - Kinetic mechanisms of covalent enzyme inhibition
 - Measures of covalent inhibitory potency
 - A close look at the covalent IC₅₀
- II. Applications: Three enzymology examples
 - Inhibition of an E3 ligase: A clear failure of the IC₅₀ method.
 - Inhibition of the JAK3 kinase: Power of the IC₅₀ method is open to discussion.
 - Inhibition of an EGFR mutant: Beyond the $k_{\text{inact}}/K_{\text{I}}$.
- III. Software: DynaFit / DynaPlate automation package
 - Inhibition of Bruton tyrosine kinase: A live software demo.
- IV. Open Discussion

<ロト < 団ト < 団ト < 団ト

Kinetic mechanisms of covalent enzyme inhibition

<ロト </p>

• Microscopic rate constants (from continuous real-time assays)

- Mechanism "C2S": $k_{\rm a}$, $k_{\rm d}$, $k_{\rm f}$
- Mechanism "C2F": k_d, k_f [Note: k_a is fixed at a "diffusion controlled" value]
- Mechanism "C1": k_a

Derived kinetic constants

Mechanisms "C2S" and "C2F"

- Mechanism "C1"
 - $k_{\rm inact}/K_{\rm I} = k_{\rm a}$
- The IC₅₀ (from end-point assays)

- Multiple definitions of covalent IC_{50} in the literature
- Time-dependence of covalent IC₅₀
- \bullet Dependence of covalent IC_{50} on other experimental factors

・ロト ・聞 ト ・ ヨト ・ ヨ

Repeat at various inhibitor concentrations (including zero):

- Method 1: [1]
 - Incubate enzyme + covalent inhibitor for a specific duration of time
 - Stop the covalent reaction somehow
 - Add substrate to determine amount of residual free enzyme
 - Compute the initial reaction rate since substrate was was added
- Method 2: ^[2]
 - Incubate enzyme + covalent inhibitor + substrate for a specific duration of time
 - Stop the enzymatic reaction
 - Determine the amount of product

Method 3: ^[3]

- Incubate enzyme + covalent inhibitor for a specific duration of time
- Add substrate
- Continue incubating enzyme + inhibitor + substrate for another fixed time interval
- Stop the enzymatic reaction and the covalent E + I reaction
- Determine the amount of product

Kitz & Wilson (1962)

[2] Krippendorff et al. (2009)

[3] Fassunke et al. (2018)

イロト イヨト イヨト イヨト

Covalent IC_{50} is by definition time-dependent

A simulation study to illustrate time-dependence of IC_{50} :

Figure 1. Dose response illustration of the time dependency of IC_{50} for covalent inhibitors (model data).

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865.

Image: A match a ma

compound	EGFR	IC 50 [nM]		
	WT	<1		
afatinib	L858R	<1		
	L858R+T790M	1.3 ± 0.1		
	19del	<1		
	19del+G724S	2.1 ± 1.0		

Fassunke, J. et al. (2018) Nature Commun. 9, 4655.

- As incubation time approaches infinity, all covalent inhibitors end up with the same IC₅₀!
- Let us figure out together what it is.

・ロト ・回ト ・ ヨト ・

- I. Theory: Chemical and biochemical kinetics
- II. Applications: Three enzymology examples
 - Inhibition of an E3 ligase: A clear failure of the IC₅₀ method.
 - Inhibition of the JAK3 kinase: Power of the IC₅₀ method is open to discussion.
 - Inhibition of an EGFR mutant: Beyond the $k_{\text{inact}}/K_{\text{I}}$.
- III. Software: DynaFit / DynaPlate automation package
- IV. Open Discussion

イロト イヨト イヨト イヨト

• An E3 ligase can be conveniently assayed in the absence of E1 and E2.

• Fluorescence polarization decreases as the fluorophore is detached from ubiquitin.

Krist, D. T. et al. (2016) Chem. Sci. 7, 5587-5595

Image: A match a ma

E3 ligase assay: Typical covalent inhibition datasets

• The observed decrease of fluorescence polarization was inverted for convenience.

イロト イ団ト イヨト イヨト

[mechanism]						
E + S> E + P	:	kaS				
E + I <==> E.I	:	ka	kd			
E.I> E-I	:	kf				
<pre>[constants] kaS = 0.0059897 ka = 100 kd = {0.01, 0.1, 1, kf = {0.00001, 0.0</pre>	10, 1 00001,	100} ?? 0.0001,	0.001,	0.01,	0.1}	??

- First-order substrate kinetics ([S] $<< K_{\rm m}$).
- Two-step inhibitor binding ("rapid equilibrium" in the initial binding step).

・ロト ・聞 ト ・ ヨト ・ ヨ

$$\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{d}t} = -k_{\mathrm{a}}[\mathrm{E}][\mathrm{I}] + k_{\mathrm{d}}[\mathrm{E}.\mathrm{I}]$$
(1)

$$\frac{5}{t} = -k_{\rm aS} \,[{\rm E}][{\rm S}] \tag{2}$$

$$\frac{\mathrm{d}[\mathrm{S}]}{\mathrm{d}t} = -k_{\mathrm{aS}}[\mathrm{E}][\mathrm{S}]$$

$$\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d}t} = +k_{\mathrm{aS}}[\mathrm{E}][\mathrm{S}]$$
(3)

$$\frac{\mathrm{d}[\mathrm{I}]}{\mathrm{d}t} = -k_{\mathrm{a}}[\mathrm{E}][\mathrm{I}] + k_{\mathrm{d}}[\mathrm{E}.\mathrm{I}]$$
(4)

・ロト ・回ト ・ヨト ・ヨ

$$\frac{\mathrm{d}[\mathrm{E}.\mathrm{I}]}{\mathrm{d}t} = +k_{\mathrm{a}}[\mathrm{E}][\mathrm{I}] - k_{\mathrm{d}}[\mathrm{E}.\mathrm{I}] - k_{\mathrm{f}}[\mathrm{E}.\mathrm{I}]$$
(5)

$$\frac{\mathrm{d}[\mathrm{E}-\mathrm{I}]}{\mathrm{d}t} = +k_{\mathrm{f}} [\mathrm{E}.\mathrm{I}]$$
(6)

• This mathematical model was auto-generated by DynaFit software from [mechanism].

- Primary best-fit model parameters are the optimized microscopic rate constants:
 - $k_{\rm d}$ dissociation rate constant
 - *k*_f forward isomerization rate constant
 - ka association rate constant is a **fixed** model parameter
- Derived best-fit model parameters are the macroscopic kinetic constants:

$$K_{\rm i} = \frac{k_{\rm d}}{k_{\rm a}} \tag{7}$$

$$K_{\rm I} = \frac{k_{\rm d} + k_{\rm f}}{k_{\rm a}} \tag{8}$$

<ロ> (日) (日) (日) (日) (日)

$$k_{\text{inact}} = k_{\text{f}}$$
 (9)

$$k_{\text{inact}}/K_{\text{I}} = k_{\text{f}} \frac{k_{\text{a}}}{k_{\text{d}}+k_{\text{f}}} \equiv k_{\text{eff}}$$
 (10)

• " $k_{\rm eff}$ " a.k.a. $k_{\rm inact}/K_{\rm I}$ is the covalent efficiency constant.

E3 ligase assay: Covalent-kinetic correlation (CKC)

• The $k_{\text{inact}}/K_{\text{I}}$ value is determined mostly by the inhibitor's binding affinity (K_{I}).

<ロト </p>

E3 ligase assay: $k_{\text{inact}}/K_{\text{I}}$ vs. IC₅₀ correlation

• The IC $_{50}$ values were determined in a separate end-point (not "continuous") assay.

・ロト ・四ト ・ヨト ・ヨ

• The wrong "best" compound (B as opposed to A) was picked out by the IC $_{50}$ method.

Image: A math the second se

- For a set of "highly active" E3 ligase inhibitors, nearly all IC₅₀ values are essentially identical.
- However, the IC₅₀ method falsely singles out 'B' as the a "stand-out" compound:

$$B >> A = C = D = E = F = G = H = I = J$$

- In contrast, the k_{eff} values are much more distinct, which allows proper ranking.
- By the more accurate k_{eff} method, compound 'A' is most potent, closely followed 'B':

$$A \ge B > C \ge D \ge E > F \ge G > H \ge I > J$$

• In the specific case of E3 ligase inhibition, $k_{\text{eff}} = k_{\text{inact}}/K_{\text{I}}$ is clearly superior to IC₅₀.

- I. Theory: Chemical and biochemical kinetics
- II. Applications: Three enzymology examples
 - Inhibition of an E3 ligase: A clear failure of the IC₅₀ method.
 - Inhibition of the JAK3 kinase: Power of the IC₅₀ method is open to discussion.
 - Inhibition of an EGFR mutant: Beyond the $k_{\text{inact}}/K_{\text{I}}$.
- III. Software: DynaFit / DynaPlate automation package
- IV. Open Discussion

イロト イ団ト イヨト イヨト

Bioorg. Med. Chem. 29 (2021) 115865

The advantages of describing covalent inhibitor in vitro potencies by IC_{50} at a fixed time point. IC_{50} determination of covalent inhibitors provides meaningful data to medicinal chemistry for SAR optimization

Atli Thorarensen^{a,*}, Paul Balbo^b, Mary E. Banker^c, Robert M. Czerwinski^b, Max Kuhn^d, Tristan S. Maurer^a, Jean-Baptiste Telliez^b, Fabien Vincent^c, Arthur J. Wittwer^b

* Medicine Design, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139 USA

^b Inflammation and Immunology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139 USA

^c Medicine Design, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT 06340 USA

^d Research Statistics, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT 06340 USA

- Two-step inhibitor binding ("rapid equilibrium" in the initial binding step).
- Identical to the mechanism also assumed for E3 ligase inhibition.

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865

<ロト < 団ト < 団ト < 団ト

Figure 1. Dose response illustration of the time dependency of IC_{50} for covalent inhibitors (model data).

 Article Abstract: "The potency of covalent inhibitors is generally considered to be more accurately described by the time-independent kinetic parameter k_{inact}/K_I rather than a by a simple IC₅₀, since the latter is a time-dependent parameter."

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

JAK3 kinase: $k_{\text{inact}}/K_{\text{I}}$ vs. IC₅₀ correlation (as published)

Figure 3. Relationship of k_{inact}/K_i with IC₅₀ for JAK3 covalent inhibitors

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865

Image: A match a ma

JAK3 kinase: $k_{\text{inact}}/K_{\text{I}}$ vs. IC₅₀ correlation (digitized)

Digitization software: Engauge ver. 4

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865

・ロト ・ 日 ト ・ 目 ト ・

JAK3 kinase: $k_{\text{inact}}/K_{\text{I}}$ vs. IC₅₀ correlation (digitized and analyzed)

- About 20 percent of compounds are outside of half-order-of-magnitude band.
- The IC₅₀ for several compounds is "off" by more than two-orders of magnitude.

Thorarensen, A. et al. (2021) Bioorg. Med. Chem. 29, 115865

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

JAK3 kinase: $k_{\text{inact}}/K_{\text{I}}$ vs. IC₅₀ potency rank

NOTE: rank "1" is the "best" rank (highest potency) 140 130 . 120 110 .0 n, 100 top 10% by 90 rank IC50 80 . kinact / Ki 70 60 50 40 30 20 top 10% by kinact/Ki 10 0 10 20 120 130 140 30 100 110 IC₅₀ rank

• The "top 10%" rule by IC₅₀ is only about 50% efficient: it misses 1/2 of true "10%" hits.

• Even the "top 20%" rule by IC₅₀ misses compounds ranked No. 1, 5, and 7 by $k_{\rm inact}/K_{\rm I}$.

Results

- The published log(IC₅₀) vs. log($k_{\rm inact}/K_{\rm I}$) correlation ($R^2 \approx 0.75$) looks impressive.
- However, a comparison of the corresponding **potency ranks** tells a different story:
- The IC₅₀ method is about 50% efficient in finding true hits ("top 10%" by $k_{\text{inact}}/K_{\text{I}}$).

Discussion

- An IC₅₀ (a single-point assay) is definitely cheaper than $k_{\text{inact}}/K_{\text{I}}$ (a continuous assay).
- The Big Question: Is this the usual "you get what you pay for" scenario?

イロト イヨト イヨト イヨ

- I. Theory: Chemical and biochemical kinetics
- II. Applications: Three enzymology examples
 - Inhibition of an E3 ligase: A clear failure of the IC₅₀ method.
 - Inhibition of the JAK3 kinase: Power of the IC₅₀ method is open to discussion.
 - Inhibition of an EGFR mutant: Beyond the $k_{\text{inact}}/K_{\text{I}}$.
- III. Software: DynaFit / DynaPlate automation package
- IV. Open Discussion

イロト イ団ト イヨト イヨト

Pagliarini, R. A. et al. (2024) Nature Cancer, submitted.

< □ > < 同 > < 回 > < Ξ > < Ξ

STX-721 mutant / w.t. selectivity by "apparent" efficiency constant

- "Apparent" efficiency constant: $k_{\rm eff}^{(app)} = k_{\rm eff}/(1+[{\rm ATP}]/{\cal K}_{\rm m}^{(ATP)})$
- Evaluated at [ATP] = 1.0 mM, similar to intracellular environment.

Image: A match a ma

STX-721 mutant / w.t. selectivity by "true" efficiency constant

• "True" efficiency constant $k_{\rm eff} \equiv k_{\rm inact}/K_{\rm I}$ is uncorrected for cellular ATP.

• By this measure, STX-721 is still moderately selective (4x) for mutant over wild-type.

Petr Kuzmič (BioKin Ltd.)

イロト イヨト イヨト イヨ

STX-721 mutant / w.t. selectivity by "true" inhibition constant

• "True" inhibition constants K_{I} (binding affinities) are identical for mutant and wild-type!

・ロト ・日下・ ・ ヨト・

STX-721 mutant / w.t. selectivity by inactivation rate constant k_{inact}

• Selectivity for mutant largely derives from chemical reactivity of the warhead.

A D > A B > A B > A

STX-721 mutant / w.t.: inactivation rate constant k_{inact} ratios

• The fictitious "compound numbers" largely reflect the progress of this project over time.

• At some point, the team apparently stumbled upon a mutant-selective warhead.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• Mutant selectivity derives mostly from this warhead, or from its immediate surroundings.

• Binding affinity, due to the rest of the molecule, affects selectivity only to a minor degree.

Pagliarini, R. A. et al. (2024) Nature Cancer, submitted.

・ロト ・ 日 ト ・ 目 ト ・

- The catalytic efficiency constant $k_{\text{inact}}/K_{\text{I}}$ does not alwys tell the whole story.
- For two-step covalent inhibitors, we should always look at k_{inact} and K_{I} separately.
- In most projects, k_{inact} stays about the same while K_{I} gets lower during optimization.
- However, in the case of the EGFR 770-insNPG-771 mutant, k_{inact} determines selectivity.

• In designing corporate databases storing covalent ligand potency, make room for all of these:

- $k_{\text{inact}}/K_{\text{I}}$: the covalent efficiency constant
- k_{inact}: the inactivation rate constant
- K_I: the inhibition constant (binding affinity)

イロト イ団ト イヨト イヨト

- I. Theory: Chemical and biochemical kinetics
- II. Applications: Three enzymology examples
 - Inhibition of an E3 ligase: A clear failure of the IC₅₀ method.
 - Inhibition of the JAK3 kinase: Power of the IC₅₀ method is open to discussion.
 - Inhibition of an EGFR mutant: Beyond the $k_{\text{inact}}/K_{\text{I}}$.

• III. Software: DynaFit / DynaPlate automation package

IV. Open Discussion

<ロト < 団ト < 団ト < 団ト

Discovery and Preclinical Characterization of BIIB129, a Covalent, Selective, and Brain-Penetrant BTK Inhibitor for the Treatment of Multiple Sclerosis

Published as part of Journal of Medicinal Chemistry virtual special issue "Exploring Covalent Modulators in Drug Discovery and Chemical Biology".

- Biogen recently released all relevant biochemical kinetic data to BioKin for publication.
- A manuscript is being prepared by BioKin + Biogen, to describe all kinetics details.

Himmelbauer, M. K. et al. (2024) J. Med. Chem., 67, 8122-8140.

イロト イポト イヨト イヨ