Leritrelvir (RAY1216): A SARS-CoV-2 Main Protease inhibitor for the treatment of COVID-19

Petr Kuzmič

BioKin Ltd.

Brandeis University :: 5 Apr 2024

• Introduction: Background, Chemistry, Biology

- 9 9
- ٩
- Results: Enzymology (Enzyme Kinetics)
 - ٩
 - ٩
 - ٩
- Discussion: Structure (X-Ray) vs. Enzyme Kinetics
 - ٩
 - ٩
 - × .
 - ۹

SARS-CoV-2 viral life cycle

Adapted from Citarella et al. (2021)

• M^{pro} is relatively conserved across SARS-CoV-2 variants.

< □ > < ^[] >

2

イロト イヨト イヨト イヨト

Problems:

- molnupiravir is mutagenic; it randomly scrambles viral RNA.
- nirmatrelvir requires ritonavir, which inhibits liver enzymes to slow down drug metabolism.

Structure of the novel M^{pro} inhibitor drug: RAY1216 = "leritrelvir"

• Yellow-shaded areas are identical in both drugs.

• RAY1216 (leritrelvir): Raynovent Biotechnology Co., Guangzhou, China

• PF-0731332 (nirmatrelvir): Pfizer Inc., New York, USA

Petr Kuzmič (BioKin Ltd.)

RAY1216 vs. PF-0731332: head-to-head comparison

- Chen, X.; Huang, X.; Ma, Q.; Kuzmič, P.; et al. (2024) Nat. Microbiol. 9, 1075 1088
- Published in print: April 5, 2024.

nature microbiolog	y 🔒	nature microbiology
Preclinical e M ^{pro} inhibito pharmacoki nirmatrelvir	valuation of the SARS-CoV-2 r RAY1216 shows improved netics compared with	
Received: 27 February 2023	Xiaoxin Chen ¹²³³ , Xiaodong Huang 🕲 ^{3,433} , Qinhai Ma ³³³ , Petr Kuzmič 🕲 ^{3,33} ,	
Accepted: 22 January 2024	Biao Zhou ⁴⁶ , Sai Zhang ⁵ , Jizheng Chen ⁶ , Jinxin Xu [⊕] ⁵ , Bin Liu ² , Haiming Jiang ⁷ , Wenjie Zhang ⁷ , Chunguang Yang ⁵ , Shiguan Wu ³ , Jianzhou Huang ⁷ , Haijun Li ⁷ , Chaofeng Long ⁷ , Xin Zhao ⁷ , Hongru Xu ⁴ , Yanan Sheng ⁴⁸ , Yaoting Guo ⁷ ,	
Published online: 29 March 2024		
Check for updates	Chuanying Niu ¹⁷ , Lu Xue ¹ , Yong Xu ¹ , Jinsong Liu ⁶ , Tianyu Zhang ⁶ , James Spencer ⁶ , Zhenzhen Zhu ¹⁰ , Wenbin Deng ⁶ , Xinwen Chen ^{6,8} , Shu-Hui Chen ^{6,9} , Nanshan Zhong ^{6,45,2} , Xiaoli Xiong ^{6,4} & Zifeng Yang ^{6,26,3}	How body-fluid vesicles block viral infection

- Almost all pre-clinical results are very similar for both drugs.
- The only crucially important difference is in pharmacokinetics (plasma stability).

(日) (同) (日) (日)

Delta variant CPE EC₉₀ corrected for plasma binding:

760 ng/ml (RAY1216) 880 ng/ml (PF-0731332)

Major difference in pharmacokinetics

K18-hACE2 transgenic mice :: 600 mg/kg/day :: day 5

eClinicalMedicine Part of THE LANCET Discovery Science

eClinicalMedicine 2024;67: 102359	Articles
Published Online 14	
December 2023	

Leritrelvir for the treatment of mild or moderate COVID-19 without co-administered ritonavir: a multicentre randomised, double-blind, placebo-controlled phase 3 trial

Yangaing Jian, ^{Alan} Zheng Shi Lin, ^{Alan} Engi Liang, ^{Alan} Rulin San,⁴⁰ Yangaing Li⁴⁰ Bingliang Li⁴⁰ Fangliang Li⁴⁰ Fangliang Li⁴⁰ Fangliang Li⁴⁰ Fangliang Li⁴⁰ Fangliang Li⁴⁰ Rulin San,⁴⁰ Tangi Jianih Tangi⁴ Ziliyang Alang, ⁴¹ Shaipang Qu, ⁴¹ Shaipang Zhang, ⁴¹ Shaipang Qu, ⁴¹ Shaipang Zhang, ⁴¹ Shaipang Zhang Zhang, ⁴¹ Shaipang Zhang Zhang Zhang Zhang Zhang Zhang Zhan

RESULTS: Time to sustained clinical recovery

- Placebo group: 11 days
- Treatment group: 10 days
- Dose: 400 mg three times a day for 5 days

- RAY1216 (leritrelvir): single component
- PF-0731332 (nirmatrelvir): co-administered with ritonavir (severe drug-drug interactions)

< □ > < ^[] >

- Introduction: Background, Chemistry, Biology
 - 9 9 9
- Results: Enzymology (Enzyme Kinetics)
 - ٩
 - ٩
 - ٩
- Discussion: Structure (X-Ray) vs. Enzyme Kinetics
 - ۹
 - ٢
 - ٩

1. Morrison, J. F., and Walsh, C. T. (1988) "The behavior and significance of slow-binding enzyme inhibitors". Adv. Enzymol. 61, 201-301.

< □ > < ^[] >

raw experimental data

implied mechanism

- two-step binding
- first step (binding proper) is "fast"
- second step (rearrangement) is "slow"

• Experimental design:

Three independent replicates of each dose-response series.

Mathematical model:

Systems of first-order ordinary differential equations.

• Regression method:

Global fit of combined progress curves.

Competing mechanisms:

- (1) Two-step "fast/slow"
- (2) One-step "slow"
- (3) One-step "fast"

• Software implementation:

Program DynaFit (Methods in Enzymology 467, 247-280, 2009).

A D > A A

 $K_{\rm i} = K_{\rm d} = 5.2 \text{ nM}$ $t_{\rm resid} < 1 \min$

• PF-0731332: one-step "fast" mechanism • RAY1216: two-step "fast / slow" mechanism

< ロト < 同ト < ヨト < ヨト

 $K_{\rm d} = 154 \, {\rm nM}$ $k_{\rm f} = 0.0030 \ {\rm s}^{-1}$ $k_{\rm r} = 0.000078 \ {\rm s}^{-1}$

 $K_{\rm i} = K_{\rm d} / (1 + k_{\rm f} / k_{\rm r}) = 4.0 \text{ nM}$ $t_{\rm resid} = 1/k_{\rm r} = 210 \, {\rm min}$

sorted by increasing K_i of RAY1216

See also:

Duan et al. (2023) Nature 622, 376-382 "Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir"

Petr Kuzmič (BioKin Ltd.)

One of several regognized nirmatelvir-resistant mutants: T21I / E166V

• PF-0731332: no inhibition

 $K_{\rm i}$ > 25,000 nM

• RAY1216: two-step "fast / slow" mechanism

$$K_{\rm d} = 470 \text{ nM}$$

 $k_{\rm f} = 0.0048 \text{ s}^{-1}$
 $k_{\rm r} = 0.00024 \text{ s}^{-1}$

$$K_{i} = K_{d}/(1 + k_{f}/k_{r}) = 22 \text{ nM}$$

 $t_{resid} = 1/k_{r} = 70 \text{ min}$

Petr Kuzmič (BioKin Ltd.)

Leritrelvir (RAY1216)

Binding to most M^{pro} mutants involves two distinct enzyme-inhibitor complexes.

RAY1216: Drug-receptor residence time for selected Mpro mutants

• RAY1216: Equilibrium between complexes

$$K_{eq} = k_f / k_r$$

• Drug-resistance of M^{pro} mutants is determined by more than just overall binding affinity.

PF-0731332: A cautionary tale of IC_{50} vs. the inhibition constant, K_i

• IC_{50} is not a suitable measure of potency for "tight-binding"¹ inhibition.

Experimental data: Duan et al. (2023) Nature 622, 376-382

• $IC_{50} = [E]/2 + K_i^{app}$

1. Williams, J. W., and Morrison, J. F. (1979) "The kinetics of reversible tight-binding inhibition". Meth. Enzymol. 63, 437-467.

- Introduction: Background, Chemistry, Biology
 - 9 9 9
- Results: Enzymology (Enzyme Kinetics)
 - •
 - ٩
- Discussion: Structure (X-Ray) vs. Enzyme Kinetics
 - ٩
 - ٥
 - ٥

- Both inhibitors form a covalent ("irreversible") complex in the crystalline phase.
- In contrast, solution-phase kinetics shows perfect reversibility.

The "jump-dilution" experiment: A standard test of reversibility

• The recovery of enzymatic activity is full and instantaneous.

There is no solution-kinetic evidence for a covalent (irreversible) complex.

Petr Kuzmič (BioKin Ltd.)

Leritrelvir (RAY1216)

Brandeis University :: 5 Apr 2024 24 / 30

Adapted from Duan et al. (2023)

• Why the huge difference between RAY1216 and PF-0731332 in binding to E166V mutants?

Detailed view of E166 / inhibitor contacts in wild-type Mpro

Images courtesy of Xiaodong Huang (GIBH, Guangzhou)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• To this untrained eye, these two structures look very similar.

C145

H-bond between and E166 side-chain and lactam NH pointed by Duan et al. (2023).

• Why the huge difference between RAY1216 and PF-0731332 in binding to E166V mutants?

Current results:

- Leritrelvir (RAY1216) is the only highly selective COVID-19 drug used as mono-therapy.
- It is unusually "slow-binding", with very slow association and long residence time.
- The main advantage of RAY1216 over PF-0731332 is in increased plasma stability.

Still to be figured out:

- Which structural features of RAY1216 are responsible for its unusually slow binding?
- Does long residence time correlate with pharmacological efficacy in this particular case?
- Why do E166 mutations strongly reduce the potency of PF-0731332, but not of RAY1216?
- Understand better the very intriguing monomer-dimer properties of M^{pro}.

Acknowledgments

- Nature Microbiology manuscript: 33 co-authors from 12 institutions.
- Closest collaborators from the Guangzhou Institute of Biomedicine and Health (GIBH):

Xiaodong Huang* PhD Student

Xiaoli (Alex) Xiong Principal Investigator Group Leader – Structural Biology

* Protein expression and purification; single-crystal analysis (absolute stereochemistry); protein crystallography (grow co-crystals with drugs; collect and interpret synchrotron data); enzyme assays; detailed manuscript management; and more.

