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This paper describes a general numerical method
or the determination of rate constants that character-
ze the binding of a ligand L simultaneously and com-
etitively to two different receptor molecules, R1 and
2. The experimental data consist of changes in the

oncentration of one receptor (e.g., R1) monitored over
ime. An example problem is represented by hirudin
L) binding to thrombin (R1) and to a chemical mutant
f thrombin (R2). The published experimental data
Wedemeyer et al. (1997) Anal. Biochem. 248, 130–140],
reviously analyzed by using an appropriate algebraic
ethod, were reanalyzed here by numerical integra-

ion [Kuzmic (1996) Anal. Biochem. 237, 260–273]. This
eneral numerical method offers the following advan-
ages. (1) It provides an estimate for the lower limit on
easible values of association rate constants. (2) It is

any orders of magnitude more accurate. (3) It is eas-
ly extensible to more complicated reaction mecha-
isms. (4) It uses a simpler formalism and it is thus
ore accessible to nonmathematicians. (5) A suitable

omputer program for the analysis of competitive
inding kinetics can be obtained via the Internet
http://www.biokin.com). © 1999 Academic Press

Key Words: enzyme kinetics; progress curves; rate
onstants; differential equations; enzyme inhibition;
low binding; tight binding; competitive binding;
hrombin; hirudin.

Thrombin is an enzyme that causes blood clotting
hen the vascular system is injured, thus preventing

he loss of blood. Conversely, thrombin inhibitors are
ery important in preventing the formation of blood
lots inside veins and arteries. One important inhibitor
f thrombin is hirudin secreted by medicinal leech.
irudin has been widely studied for its ability to bind

ith thrombin in a time-dependent fashion (‘‘slow l

003-2697/99 $30.00
opyright © 1999 by Academic Press
ll rights of reproduction in any form reserved.
inding’’), yielding a very strongly bound molecular
omplex (‘‘tight binding’’). This ‘‘slow, tight’’ binding
etween thrombin and hirudin leads to a rather com-
lex mathematical model for the reaction time-course.
In this study, the mathematical complexity is further

ncreased by observing the simultaneous (competitive)
inding of hirudin to two different forms of thrombin,
amely, the natural form and a chemically mutated
orm. The paper describes a general numerical method
or the determination of rate constants that character-
ze the simultaneous, competitive binding of one bio-
hemical ligand to two different receptor molecules.
he thrombin–hirudin system is used as an illustra-
ive example.

The published experimental data (1) were previously
nalyzed by using an approximate algebraic method.
roblems which motivated the research reported here
an be summarized as follows. The approximate alge-
raic method does not provide any estimate fore the
ssociation rate constants; it is insufficiently accurate
or least-squares regression analysis; it cannot be ex-
ended to more complex reaction mechanisms; it is
xceedingly complicated despite being only an approx-
mation (the original report contains 97 numbered
quations and 3 mathematical appendices); and the
orresponding computer program is unavailable to the
cientific public.
In contrast, the general numerical method described

ere can be used to determine the lower limit on fea-
ible values of association rate constants; it is 13 orders
f magnitude more accurate which makes it suitable
or least-squares regression analysis; it can be ex-
ended to an arbitrarily complex binding mechanism; it
s comparatively simple to use because it requires as
nput from the investigator only chemical equations by
o mathematical equations; and the corresponding
omputer program (2) is available to the scientific pub-

ic via the Internet (http://www.biokin.com).
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18 PETR KUZMIČ
XPERIMENTAL DATA

The experiments that are analyzed in this paper
ave been described elsewhere (1). Professor H. A.
cheraga (Cornell University) is gratefully acknowl-
dged for supplying the published data in electronic
ormat. Briefly, thrombin (178 nM) and hirudin (208
M) were incubated until equilibrium was achieved.
he total volume was 90 ml. The equilibrated mixture
as then diluted with 10 ml dehydrothrombin so that

he total concentration of the mutated enzyme was 165
M. In a complementary experiments, dehydrothrom-
in (183 nM) and hirudin (208 nM) were incubated in
0 ml of buffer, and 10 ml thrombin was added so that
he final concentration was 160 nM. Thus the final
oncentrations of all components were identical in both
xperiments; only the order of addition was different.
he concentration of free thrombin was followed over
ime by using a kinetic assay described elsewhere (1).

INETIC ANALYSIS

The statistical analysis of the thrombin competitive
inding kinetics was accomplished by using the pro-
ram DYNAFIT (2), a general tool for the study of
iochemical kinetics and equilibria. The presumed re-
ction mechanism for simultaneous (competitive) bind-
ng of thrombin and dehydrothrombin to hirudin is
hown in Scheme 1. From the input data shown in Fig.
, DYNAFIT automatically derived all the required
ifferential and algebraic equations.
The dynamic behavior of the thrombin–dehydro-

hrombin–hirudin system was internally represented
n DYNAFIT (2) by a system of simultaneous, first-
rder, nonlinear, ordinary differential equations (ODE)
see Appendix). The numerical solution was accom-
lished by using a modification of the algorithm
SODE (3) (maximum local truncation error 10217

M). Equilibrium states of the thrombin–hirudin–de-
ydrothrombin system were internally represented by
system of simultaneous, nonlinear algebraic equa-

ions (see Appendix) which express the mass balance
aw for component reaction species. The numerical so-
ution was accomplished by using a modification of the

ultidimensional Newton–Raphson method (4, 5) (ab-
olute error tolerance 10216 nM). Regression analysis
as accomplished by using Reich’s variation (6) of the
evenberg–Marquardt least-squares fitting algorithm
aSCHEME 1
7). Standard errors of rate constants were computed
rom square roots of diagonal elements of the final
ariance–covariance matrix (8).
All rate constants were subjected to a determination

f the asymptotic 95% confidence interval (9) by con-
ucting a systematic search in the parameter space.
his procedure consisted of many repeated least-
quares regression analyses. The general principles of
he confidence interval search are explained elsewhere
10–12). Briefly, each rate constant of interest was
ept constant at its best-fit value, while all the remain-
ng rate constants were optimized. The resulting value
f weighted least squares was recorded. Subsequently
he rate constant of interest was shifted to a lower or to

IG. 1. DYNAFIT (2) script file for the least-squares fit of the
hrombin (E)–dehydrothrombin (F)–hirudin (L) competitive binding
ata from Fig. 1 of Wedemeyer et al. (1).
higher value, progressively away from the best-fit
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19COMPETITIVE BINDING KINETICS
alue. At each step, all the remaining rate constants
ere again subjected to least-squares optimization. As

he rate constant of interest moved away from its best-
t value, the sum of least-square deviations naturally

ncreased. Statistical theory gives us a critical value of
his increase in the sum of squares for each probability
evel of the confidence interval. The sequence of values
o be explored for each rate constant of interest was
etermined by an automatic algorithm to be described
lsewhere.

YNAFIT Script File

The complete DYNAFIT script file used for the
hrombin–hirudin–dehydrothrombin data is shown in
ig. 1. In the [mechanism] section, the first rate con-
tant after the colon always refers to the left-to-right
rrow in each reversible reaction step, while the second
ate constant refers to the right-to-left arrow. In the
constants] section, the values of rate constants are
nitial estimates. Those values that are followed by a
uestion mark are selected for least-square optimiza-
ion. Values followed by two question marks are se-
ected for a 95% confidence interval search. In this
xample we have chosen to represent all concentra-
ions in nanomolar units, thus the dimension of all
imolecular rate constants is nM21 s21. The [re-
ponses] parameter links the concentrations of spe-
ies to the observable physical quantity. In this case
he free thrombin concentration was measured directly
see the original report (1) for details); therefore, the

olar response coefficient of free thrombin is set to
nity, while the other species are ignored. The delay
arameter in the [progress] section defines the time
n seconds that elapsed after the last component was
dded to the assay, and before the first measurement of
hrombin concentration was made.

ESULTS

Changes in free thrombin concentration over time
ere fitted to the reaction mechanism shown in
cheme 1 by using the DYNAFIT script file displayed

n Fig. 1. The adjustable parameters were all four rate
onstants that appear in the reaction mechanism. The
otal concentrations of thrombin and hirudin were kept
onstant in the least-squares fit because preliminary
omputations indicated that the nominal values (160
nd 178 nM, respectively) were in good agreement with
he available experimental data. On the other hand,
he concentrations of dehydrothrombin (nominally 165
M) were optimized separately for each data set be-
ause the concentration of the mutated enzyme was
nown less precisely than the concentration of the na-
ive enzyme.

The best-fit values of rate constants k through k
1 4

re summarized in Table 1. The dissociation of the c
hrombin–hirudin complex is governed by the rate con-
tant k2 5 22 [15, 40] ms21, while the dehydrothrom-
in–hirudin complex is marginally faster at k4 5 30
25, 39] ms21. The best-fit values of the association rate
onstants and the associated 95% confidence intervals
re k1 5 0.69 [0.17, }] mM21 s21 for thrombin and k3 5
.38 [0.06, }] mM21 s21 for dehydrothrombin.
The graphical results of the least-squares fit are

hown in Fig. 2. It can be seen that the data and the
heoretical fitting model are in very good agreement,
imilar to the original report (1). The results of the
onfidence interval search are summarized in Fig. 3
nd in Table 1.
The 95% confidence interval limits for the dissocia-

ion rate constants were more or less in agreement
ith the formal standard errors. For example, the best-
t value and the formal standard error of the rate
onstant k2 was (22 6 3) ms21, which corresponds to the
redicted 95% confidence interval k2 5 22 [16, 28] ms21.
he confidence interval found in the systematic search
as k2 5 22 [15, 41] ms21. The confidence interval is
onsymmetrical and wider than the standard errors
uggest, but at least it is closed both from above and
rom below.

In contrast, the 95% confidence interval limits for
he association rate constants are open-ended on one
ide. Only the lower limit could be determined, but
disregarding the physical constraints imposed by dif-
usion) the upper limit on these association rate con-
tants is infinity (see Fig. 3a). The lower 95% confi-
ence interval limit seems quite well determined by
he experimental data. The thrombin association rate

TABLE 1

Rate Constants for Thrombin–Dehydrothrombin–Hyrudin
nteractions (see Scheme 1) and in Square Brackets the
orresponding 95% Confidence Intervals

Set Parameter Best fit Ref. (1)

k1 mM21 s21 0.68 [0.17, `] —
k2 ms21 22 [15, 40] 19 [16, 23]
k3 mM21 s21 0.38 [0.06, `] —
k4 ms21 30 [25, 39] 29 [26, 32]
k1/k3 1.8 1.7 [1.3, 2.5]
k1k4/k2k3 2.7 2.6 [2.4, 2.9]

1 ĉF nM 137.4 6 14.6 —
2 ĉF nM 139.5 6 18.9 —
3 ĉF nM 125.7 6 12.9 —
4 c̃F nM 186.4 6 2.5 —
5 c̃F nM 185.6 6 2.5 —
6 c̃F nM 191.0 6 2.5 —

Note. The ‘‘hat’’ accent (ĉ) represents the best-fit concentration of
ehydrothrombin (nominal value 165 nM) after thrombin was added
o the assay. The ‘‘tilde’’ accent (c̃) represents the best-fit initial
oncentration of dehydrothrombin (nominal value 183 nM) in the
nverse experiment.
onstant certainly is higher than 0.7 mM21 s21, while
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20 PETR KUZMIČ
or dehydrothrombin the lowest reasonable value of the
ssociation rate constant k3 is 0.4 mM21 s21.

ISCUSSION

It has been known for decades that fitting progress
urves permits the estimation of individual rate con-
tants, whereas methods based on pseudo-equilibrium
ypotheses only permit estimates of kinetic constants
hat are combination of rate constants. However, the
hallenging feature of the thrombin–dehydrothrombin–
irudin system is that each experiment contains both an
quilibrium phase, during which the components are in-
ubated until reaching stationary state, and a dynamic
hase during which the composition changes over time.
hus in this case a generalized numerical analysis of the
eaction progress is inseparable from the numerical sim-
lation of preexisting equilibria. It is the dual nature of

IG. 2. Results of least-squares fit of the thrombin (E)–dehydro-
hrombin (F)–hirudin (L) competitive binding data from Fig. 1 of

edemeyer et al. (1) to the reaction mechanism shown in Scheme 1
DYNAFIT) (2) script file in Fig. 1).
he problem at hand which, in a more traditional ap- a
roach to data analysis, creates rather exceptional alge-
raic complexity (1). In this work all algebraic complexity
as circumvented simply by invoking the mass action

aw both for the equilibrium and for the dynamic phase of
he experiment.

The problem of competitive simultaneous binding of
wo different ligands to the same receptor has been
reated in the literature mostly from the equilibrium
oint of view. For example, we have previously studied
he tight binding of dihydrofolate reductase with the
ntileukemic drug, methotrexate, and simultaneously
ith one of its metabolites, methrotrexate–a-aspartate

13). We also designed an assay for the determination
f ligand–receptor binding constants by using a fluo-
escent ligand (a fluorescent analog of the immunosup-
ressant cyclosporin A) as a reporting agent, which
ompeted for recombinant human cyclophilin with a
yclosporin A analog (14).
Even such relatively simple systems, including two

igands binding simultaneously to the same receptor,
re quite difficult to describe mathematically. Al-
hough Wang (15) was able to derive an exact mathe-
atical expression for competitive binding of two dif-

erent ligands, using our cyclosporin data (14) as a test
xample, the final algebraic expressions are quite com-
licated. It appears simpler to calculate the equilib-
ium composition by using iterative computations,
ased in certain special cases on simple recurrent for-
ulas (13–16), or in the general case on matrix com-

utations (5).
In this paper we have examined a case similar to

hose discussed above, namely, the case of two receptor
olecules (thrombin and one of its chemical mutants)

inding simultaneously to the same ligand (hirudin).
he kinetic analysis must include solving a system of
ifferential equations. One well-known biochemical
oftware system designed for this purpose consists of
he programs KINSIM/FITSIM (17–19). A reviewer
as suggested that the rate constants for competitive
inding could in fact be solved by using those pro-
rams, but this statement is incorrect. The programs
INSIM/FITSIM were not designed to perform compu-

ations on biochemical systems at equilibrium. Thus if
he kinetic phase of a biochemical assay is preceded by
n equilibrium phase, during which an arbitrary num-
er of components is equilibrated, KINSIM/FITSIM
annot be used for data analysis.
Neither can competitive kinetics be investigated by

hose general-purpose, commercial software packages
hich do not require full-scale compute programming
n the part of the investigator, for example, by com-
uter programs Axum, EnzFitter, FigP, Keleidagraph,
rigin, Prism, SigmaPlot, UltraFit, WinNonlin, Win-
yme, and others that were examined as part of this
esearch. Some commercial software systems for data

nalysis do allow the user to write and compile sepa-
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21COMPETITIVE BINDING KINETICS
ate software modules in programming languages,
uch as FORTRAN or C, but most practitioners of
xperimental enzyme kinetics lack expertise in this
ind of software development.
For example, Taylor et al. (20) studied the competi-

ive binding of collagenase to TIMP-1 (‘‘slow, tight’’
nhibitor of collagenase) and simultaneously to a radio-
abeled analog of TIMP-1. This problem is a simpler
ariant of the competitive binding studied here be-
ause TIMP-1 and labeled TIMP-1 can be assumed to
ave the same binding constant. The authors used the
oftware system Scientist (MicroMath Scientific Soft-
are), supplemented by a specially compiled software
odule representing the differential equation solver
PISODE (21). The authors then used their propri-
tary software system to fit progress curves for ‘‘slow,
ight’’ inhibition of collagenase. Interestingly, they
ever attempted a quantitative treatment of the TIMP/
ollagenase competitive binding data, which is only
isplayed but not analyzed in their paper. Thus, the
erformance of Taylor’s software for the task at hand
emains unknown.

The kinetic analysis of competitive binding was pre-
iously attempted by using an ‘‘approximate algebraic
ethod,’’ based on the derivation of algebraic formulas

hat are quite complicated, while still only approxima-
ions to the true solution. Both the approximate alge-

IG. 3. Results of confidence interval estimation for rate constant k
4, respectively. The solid horizontal line marks the allowed increase i
he limits of the 95% confidence interval are represented by squares
urve is a parabola computed from the formal standard errors.
raic approach (1) and the general numerical approach t
2) used here gave essentially identical estimates for
he dissociation rate constant of the thrombin–hirudin
omplex. Thus Wedemeyer et al. (1) found k2 5 19 [16,
3] ms21, while we have k2 5 22 [15, 40] ms21. Similarly,
or the chemical mutant of thrombin Wedemeyer et al.
ound k4 5 29 [26, 32] ms21, while we have k4 5 30 [25,
9] ms21.
The algebraic method (1) and the numerical method

2) used here also agree on various ratios of microscopic
ate constants. For the ratio of overall affinities, Wede-
eyer et al. (1) found k1k4/k3k2 5 2.6 [2.4, 2.9], while we

ave k1k4/k3k2 5 2.7, essentially an identical value. For
he ratio of association rate constants, Wedemeyer et
l. found k1/k3 5 1.7 [1.3, 2.5], while we have k1/k3 5
.8. On the basis of these two rate constant ratios, both
ethods lead to the same conclusions which can be

ummarized as follows. First, the overall association
quilibrium constant of dehydrothrombin is 2.6 times
ower than thrombin, which corresponds (only) to
bout 0.6 kcal/mol difference in binding energy. Sec-
nd, most of this difference between the native enzyme
nd the mutated enzyme comes from association rates.
nly a small additional contribution comes from the
ifference in dissociation rates.
Because in most respects the two computational
ethods, analytical (1) and numerical (2), gave virtu-

lly identical answers, it is legitimate to ask what is

) and k2 (b). Similar results were obtained for rate constants k3 and
e weighted sum of square corresponding to the 95% confidence level.

hile the limits of the formal standard error by triangles. The dotted
1 (a
n th
, w
he advantage in using either method for the analysis
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22 PETR KUZMIČ
f competitive binding kinetics. One advantage of the
‘approximate algebraic method’’ is that is does not
equire numerical integration of stiff systems of differ-
ntial equations, and therefore it is probably faster
han the numerical method used here. Even so, the
east-squares regression analysis of the thrombin data
y using the program DYNAFIT (2) took only 17 s on a
tandard desktop personal computer.
The numerical method presented here offers several
ajor advantages: (1) it provides at least the lower

imit for the association rate constants; (2) it is much
ore accurate than the approximate algebraic method;

3) it can be extended to more complex mechanisms; (4)
he theoretical model is represented by a set of chem-
cal equations, thus avoiding tedious derivation of al-
ebraic and differential equations; and (5) the requisite
omputer program is publicly available. These advan-
ages are now briefly discussed in their turn.

The first advantage of our numerical method is that
an be used to estimate the lower limits for the asso-
iation rate constants, k1 . 0.7 mM21 s21 and k3 . 0.4
M21 s21 for thrombin and dehydrothrombin, respec-

ively. In contrast, the authors of the approximate an-
lytic method write, ‘‘it should be noted that . . . the
ast-time rate constants [k1 and k3] are not individually
etermined, only their ratio’’ (1).
The infinite upper limit of the confidence interval for

oth association rate constants may appear unusual.
onfidence intervals for adjustable model parameters
sually are as considered symmetrical, and are most
ften estimated simply from formal standard errors.
owever, this simplified treatment of parameter un-

ertainty is only valid if the adjustable model param-
ters are not at all correlated, that is, if the best-fit
alues do not influence each other. Unfortunately, for
ny nonlinear fitting model such as the competitive
inding kinetics described here, the assumption of pa-
ameter independence does not hold. Because biochem-
cal kinetic model without exception are intrinsically
onlinear and contain mutually correlated parame-
ers, many standard errors of parameters published in
iochemical literature are strictly speaking meaning-
ess. Ths problem of proper confidence interval estima-
ion in biochemical kinetics is thoroughly explained in
everal practically oriented reviews (10–12).
The infinite upper bound on the association rate

onstants is caused by severe intrinsic ill-conditioning.
s a matter of principle, no method of analysis could
ver extract the upper limit from the data used in this
tudy. However, if the association of thrombin and
ehydrothrombin with hirudin were found on a much
horter scale (e.g., seconds instead of hours), then the
ssociation rate constants could be determined easily.
herefore, the ideal data for a complete investigation of
he thrombin system would consist of several progress

urves collected on disparate time scales. f
The second major advantage of our numerical
ethod is that it is many orders of magnitude more

ccurate than the approximate analytical method.
hile Wedemeyer et al. (1) computed the changes of

hrombin concentration with the uncertainty as high
s 25 3 1023 nM, the accuracy of the numerical solu-
ion used here (2) is 10217 nM. To justify their approx-
mate analytical method, Wedemeyer et al., (1) make a
irect comparison between the accuracy of the compu-
ations and the accuracy of available experiments.
owever, in the least-squares regression analysis the
nderlying theoretical model must be computed many
rders of magnitude more accurately than the experi-
ental data are measured, for the following reason.
Least-squares regression requires repeated compu-

ation of derivatives to the theoretical curve with re-
pect to the optimized parameters. In their turn, these
erivatives are obtained at each step of the iterative
egression by the ‘‘finite-difference’’ method ([8], p.
86), that is, by computing two minutely different the-
retical curves. The first is obtained by using the cur-
ent values of the adjustable parameters, while the
econd curve is obtained by altering one of the adjust-
ble parameters to a very small degree (typically by
.01%). The difference between the two very closely
atched curves, divided by the small increment in the

arameter of interest, is approximately equal to the
esired derivative. Understandably, in taking a very
mall difference between two very close numbers, both
f these numbers must be computed very much more
ccurately than the desired result. The exact formulas
overning the computational accuracy of the ‘‘finite-
ifference’’ method are given as Eq. [5.7.5] through
5.7.9] in the reference cited above (8).

With regard to the numerical accuracy of the present
ethod, it should be noted that the local truncation

rror (10217 nM) of the integration procedure accumu-
ates over the entire progress curve. In the end, the
lobal truncation error collected over many small inte-
ration steps could be larger than the local error, de-
ending on the extent to which these small local errors
utually amplify or (occasionally) cancel. The impor-

ant point is that both local and global truncation error
ontrol must be considered a very important part of
ny numerical simulation procedure.
The third advantage of the numerical method used

ere is that it can be easily extended to more complex
eaction mechanisms. For example, if the competitive
inding experiment were performed with an enzyme
hat dissociates into monomeric subunits, an algebraic
odel could not be derived as a matter of principle. In

ontrast the fitting model based on differential equa-
ions always exists.

The fourth advantage of the numerical method is
hat it relies on a comparatively simple mathematical

ormalism, which can be derived automatically by the
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23COMPETITIVE BINDING KINETICS
omputer form the reaction stoichiometry. Thus, while
edemeyer’s paper (1) contains 97 numbered equa-

ions and 3 mathematical appendices, the entire input
or program DYNAFIT consists of the script file in Fig.
. Many practicing biochemists prefer writing E 1 L7
L : k1 k2 ; F 1 L7 FL : k3 k4 over handling Bernoulli
quations, ‘‘slow-time’’ and ‘‘fast-time’’ approximations,

‘quasi-equilibrium’’ solutions, or the ‘‘matched asymp-
otic expansion’’ method (1).

Finally, the fifth major advantage of the numerical
ethod is that it is publicly available to any interested

nzymologist. While the data-analysis software devel-
ped by the Cornell group (1) is currently unavaiable to
he scientific public, the program DYNAFIT can be down-
oaded from the Internet at http://www.biokin.com. Re-
earchers without access to the Internet can send a self-
ddressed stamped envelope including a blank formatted
omputer diskette to the author’s address.

PPENDIX

From the symbolic representation of the reaction
echanism shown in Fig. 1, DYNAFIT (2) derived a

ystem of differential Eq. [1] through [5], which de-
cribe the time course of the competitive binding ex-
eriment. The equations are solved numerically by us-
ng a modification of the algorithm LSODE [3].

ċE 5 2k1cEcL 1 k2cEL [1]

ċL 5 2k1cEcL 1 k2cEL 2 k3cLcF 1 k4cFL [2]

ċF 5 2k3cLcF 1 k4cFL [3]

ċEL 5 k1cEcL 2 k2cEL [4]

ċFL 5 k3cLcF 2 k4cFL [5]

DYNAFIT (2) also derived automatically the system
f simultaneous nonlinear algebraic Eq. [6] through
8], which describe the mass balances of component
pecies. The tilde accent (c̃) stands for total or analytic
oncentrations. Ratios of rate constants (e.g., k1/k2) are
reated as unique association equilibrium constants.
he algebraic equations are solved numerically by us-

ng a modification of the algorithm EQUIL (5).

k1

c̃E 5 cE 1 k2

cEcL [6]
c̃F 5 cF 1
k3

k4
cFcL [7]

c̃L 5 cL 1
k1

k2
cEcL 1

k3

k4
cFcL [8]
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