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factory fit of more than one progress curve to the same
A computer program with the code name DYNAFIT set of rate constants, and it can be used for active-site

was developed for fitting either the initial velocities titrations. Finally, DYNAFIT can treat as adjustable pa-
or the time course of enzyme reactions to an arbitrary rameters certain instrumental parameters, such as base-
molecular mechanism represented symbolically by a line signal or molar absorptivity.
set of chemical equations. Seven numerical tests and Classical enzyme kinetics (3–5) is concerned with
five graphical tests are applied to judge the goodness fitting a set experimental data to a single algebraic
of fit. Experimental data on the inhibition of the dis- equation, namely the exact or analytical rate equation
sociative dimeric proteinase from HIV were used in based on the postulated reaction mechanism. The goal
four test examples. A set of initial velocities was ana- is to determine the value of certain kinetic constants
lyzed to see if a tight-binding inhibitor could bind to or, more importantly, to see if the mechanism fits thethe HIV proteinase monomer. Three different sets of

data. For many important mechanisms, such as tight-progress curves were analyzed (i) to determine the ki-
binding inhibition of dissociative dimeric enzymesnetic properties of an irreversible inhibitor, (ii) to in-
(retroviral proteinases, integrases, and reverse tran-vestigate the dissociation and denaturation mecha-
scriptases), the exact rate equation unfortunately can-nism for the protease dimer, and (iii) to investigate the
not be derived. In order to determine the inhibitioninhibition mechanism for a transient inhibitor. The
constants or validate a postulated inhibition mecha-program is available by anonymous ftp via uwmml.ph
nism, one must resort to an inexact or finite-differencearmacy.wisc.edu and on the World Wide Web via http://
solution of a complete system of algebraic and differen-uwmml.pharmacy.wisc.edu. q 1996 Academic Press, Inc.

tial equations.
The exact rate equations of classical enzyme kinetics,

such as the Michaelis–Menten equation, can be evalu-
ated with little computational effort. Given the concen-This paper describes a novel computational tool for
tration of the substrate and the enzyme and given themechanistic enzyme kinetics, the program DYNAFIT.
values of kcat and KM , one can compute the steady-Given a set of initial reaction velocities, or a set of
state velocity by hand, because only a few arithmeticprogress curves from enzyme reactions, the program
operations (additions, multiplications, and divisions)fits the data to an arbitrary reaction mechanism repre-
are involved. In contrast, the approximate, iterativesented symbolically by a set of chemical equations.
solution of the complete systems of differential equa-There are no other methods that can be used to fit
tions usually includes millions of arithmetic operationsinitial velocities to a set of chemical equations. Certain
and thus can be performed only by a machine.well-known programs (1, 2) use chemical equations as

This new computational enzyme kinetics was pres-input for simulations of progress curves, but DYNAFIT
aged by Garfinkel et al. (6) and pioneered by computersurpasses them in four important respects. First,
programs KINSIM (1) and FITSIM (2). The new nu-DYNAFIT can handle progress curves from concentra-
merical approach was systematized in an introductorytion jump experiments, as is explained below. Second,
monograph (7). The starting point for our research wasDYNAFIT can simulate and fit progress curves with
the realization that the existing computer programsthe involvement of preexisting isomerization equilibria.
have fundamental defects. They cannot simulate or fitThird, DYNAFIT considers concentrations as unknown

if necessary. This capability is required to achieve a satis- initial reaction velocities, cannot analyze concentration

260 0003-2697/96 $18.00
Copyright q 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

AID AB 9572 / 6m16$$$301 05-13-96 19:48:10 aba AP: Anal Bio



REGRESSION OF ENZYME KINETIC DATA 261

jump experiments, do not take into account titration sures the probability that the reduced x2 (15) could
arise by pure chance. (ii) The average deviation mea-errors, and do not allow for uncertainties in instrumen-

tal parameters such as baseline absorbance or molar sures the systematic bias of the fit. (iii) The ran-
domness in the runs of the same signs of residuals (16)absorption coefficients. Program DYNAFIT described

in this paper remedies these deficiencies. is expressed as a probability that any given run of signs
is entirely random (e.g., ///000/00/00/////
0000/ has probability of randomness 3.5%). (iv) The

METHODS continuous criterion for the goodness of fit (17) is a
pass–fail test, at the 5% confidence level, that the re-This section presents an outline of the most im-
siduals of fit come from the normal distribution. (v) Theportant theoretical principles used in DYNAFIT. Sev-
Kolmogorov–Smirnov statistic (14) also measures theeral established computational methods mentioned be-
probability that the residuals follow the normal orlow were modified to suit the analysis of enzyme
Gaussian distribution. (vi) The Durbin–Watson statis-systems, and other algorithms were developed de novo.
tic (12, 18) measures the probability that the residualsNo attempt is made at a rigorous description of techni-
of fit might be serially correlated, which indicates acal details, which will be given in a specialized account
lack of fit. (vii) The Tukey statistics T1,1 and T1,2 (18)elsewhere.
diagnose various types of systematic misfit.Computation of multiple simultaneous equilibria.

To compute the composition at equilibrium of an arbi- Graphical tests of goodness of fit. Five graphical
trary mixture of biochemical reactants, DYNAFIT uses techniques are used to diagnose lack of fit, manifested
a stripped-down version of the program EQUIL (8), by nonrandom patterns in the residuals. (i) For a suc-
based on the multidimensional Newton–Raphson cessful fit, the residuals plotted against the indepen-
method. The original algorithm was simplified by elimi- dent variable (e.g., time or concentration) should be
nating most devices that enforce convergence [for de- symmetrically distributed about the horizontal axis
tails see (8)]. Only a simple check was retained to pre- (19). (ii) Even more expressive are plots of residuals
vent the occurrence of negative concentrations as against the dependent variable (e.g., absorbance or ve-
intermediate results. locity) (16, 18). (iii) The histogram of standardized re-

siduals should have the characteristic bell shape. (iv)Computation of reaction progress curves. A modifi-
The normal plot of standardized ordered residuals (20)cation of the Livermore solver of ordinary differential
should be linear for a good fit, and the slope of this plot,equations [LSODE (9)] was employed to compute prog-
i.e., the standard deviation, should be close to unity.ress curves. The backward differentiation formula with
(v) The empirical cumulative distribution function (20)full analytical Jacobian is used, along with stringent
should follow the cumulative normal distribution (21).error tolerances (absolute error 10020 M, relative error

1008). Changes in LSODE, inspired by the design of Redundancy of fitting parameters. Five numerical
the differential-algebraic solver DASSL (10), were in- criteria are used to assess the uncertainties of fitting
troduced to prevent negative concentrations from aris- parameters, their mutual dependence, and redundancy
ing during the computation. in the given model. (i) The formal standard errors of

fitting parameters, defined as the square roots of theLeast-squares regression. A variation of the Lev-
diagonal elements of the variance–covariance matrixenberg–Marquardt algorithm due to Reich (11) was
(14), are a crude approximation to true uncertainties.further modified, to allow optional restarts whenever
(ii) The asymptotic correlation matrix (16) and (iii) thethe weighted sum of squared deviations increases. Re-
variance inflation factors (16) measure the overall code-starts are attempted also when the algorithm reaches
pendency of fitting parameters. (iv) The condition num-a minimum on the least-squares hypersurface (12). In
bers, defined as the ratios of eigenvalues of the scaledsome cases these restarts guide the Levenberg–Mar-
information matrix over the smallest eigenvalue (22),quardt–Reich minimization out of a shallow false mini-
reveal the presence of a possibly redundant combina-mum. The following physical quantities can be treated
tion of fitting parameters. (v) The corresponding eigen-as adjustable parameters: (i) rate constants, (ii) ana-
vectors (22) describe such redundant combinations inlytic concentrations of reactants, (iii) molar response
detail.coefficients (e.g., the molar absorbance coefficients in

spectrophotometry), and (iv) the instrumental offset Matrix formulation of reaction mechanisms. The
(e.g., absorbance at Time 0). Some authors have used symbolism of chemical equations is translated into the
a rational power function (13) to describe the experi- underlying systems of mathematical equations by us-
mental variances; we use instead a cubic polynomial. ing the theory of matrices (23). Formula matrices for

the multiple equilibrium problem (24) are derived auto-Numerical tests of goodness of fit. Seven numerical
matically, by using a modification of known matrixtests are used to diagnose the goodness of fit to a given

model. (i) The incomplete gamma function (14) mea- methods (25, 26). Linear algebraic methods are used
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ible inhibitor has an initial binding constant of 0.83 {
0.02 nM and a deactivation rate constant of 0.122 {
0.002 s01. In contrast, the program FITSIM (2) failed to
match the data and the model and gave very different
inhibition constants (0.0001 nM, 50 s01). A detailed
comparison of the two programs is given in Discussion.

Note that the bimolecular association rate constants
were set to the same value (108 M01 s01) for the inhibi-
tor, the substrate, and the product. In reality it is ex-
tremely unlikely that all three ligands would have ex-SCHEME 1
actly identical association rate constants. In this
example we used a feasible identical value merely be-
cause the exact values cannot be determined from thealso to transform equilibrium constants into the stabil- sample data.ity constants of molecular complexes (27), which are

required for the computation of multiple simultaneous
Example 2: Concentration Jump Experimentsequilibria.

This example illustrates the combination of comput-
RESULTS ing multiple simultaneous biochemical equilibria (solv-

ing systems of algebraic equations) and computing theTypical results obtained by using program DYNAFIT
time course of biochemical reactions (solving systemsare illustrated in this section by way of four examples
of differential equations). This combination of differenttaken from the inhibition kinetics of HIV proteinase.
computing tasks is necessary to analyze progressEach example represents one feature of the program
curves obtained in the concentration jump experi-which is absent in other known tools for the analysis
ments.of enzyme kinetic data: (i) the inclusion of titration

The purpose of the following two assays was to deter-errors, (ii) the concentration jump experiments, (iii) the
mine the dissociative properties of the HIV proteinasepreexisting isomerization equilibria, and (iv) the analy-
under the given set of experimental conditions, namelysis of initial velocities. In some cases the structure of
under vigorous mechanical stirring. In the first experi-the HIV proteinase inhibitors was not known to this
ment (curve A in Fig. 2) the enzyme was kept in thedata analyst. The sample experimental data were pro-
stock solution at 1.5 mM. To initiate the reaction, avided for consultations by researchers in the academia
small aliquot of the enzyme solution was added to theand in the industry, as is gratefully acknowledged be-
rapidly stirred fluorogenic substrate, so that the finallow. The structure of the inhibitors is not important
concentration was much lower in the assay (0.005 mM)here, because the sole purpose of this paper is to illus-
than in the enzyme stock. The result of this dilution istrate the basic functionality of a new program for ki-
that the enzyme dimer partially dissociates over time.netic analysis.
In the second experiment (curve B in Fig. 2) the order
of additions was reversed. The enzyme (0.005 mM) was

Example 1: Titration Errors first equilibrated in the rapidly stirred assay buffer,
and the reaction was started by the addition of a veryThis example illustrates the importance of

allowing for titration errors in the analysis of enzy- small volume of the substrate stock. An inverse process
takes place, as the substrate induces assembly of thematic progress curves. The HIV proteinase (assay

concentration 0.004 mM) was added to a solution of active dimer from inactive subunits (30). The two prog-
ress curves taken together were fitted to the kinetican irreversible inhibitor and a fluorogenic substrate

[25 mM (28)]. Five assays were conducted, at four dif- model shown in Scheme 2. Figure 2 shows a very good
match between the theoretical model and the experi-ferent concentrations of the inhibitor (0, 0.0015,

0.003, and 0.004 mM in replicate). The fluorescence mental data. The numerical results are summarized in
Table 2. Unlike Schemes 1 and 3, Scheme 2 does notchanges were monitored for 1 h in each experiment.

The combined experimental data were fitted as a include product inhibition, because in this particular
example the corresponding rate constant kp is notwhole [global analysis (29)] to the reaction mecha-

nism shown in Scheme 1. The results of the least- uniquely determined from the sample data and appears
redundant in the fitting model.squares fit are summarized in Table 1 and in Fig. 1.

Figure 1 shows that program DYNAFIT was able to The best-fit values of rate constants for association
and dissociation of the monomer subunits (0.61 mM01match the experimental data and the theoretical model

in Scheme 1 reasonably well. The best-fit values of ad- s01 and 0.0085 s01) give an equilibrium constant Kd 14
nM. These results are comparable with the publishedjustable parameters in Table 1 mean that the irrevers-
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TABLE 1

Results of the Least-Squares Fit of Progress Curves Shown in Figs. 1 (DYNAFIT) and 7 (FITSIM)
to the Kinetic Model Shown in Scheme 1

Fitted value

Dataset (trace) Parameter Initial value DYNAFIT FITSIM

kmd (mM01 s01) 0.1 — —
kdm (s01) 0.001 — —
kon (mM01 s01) 100 — —
ks (s01) 300 179.7 { 2.0 118.4 { 2.5
kcat (s01) 10 9.46 { 0.17 8.107 { 0.093
kp (s01) 500 1117 { 16 668 { 41
ki (s01) 0.1 0.0831 { 0.0018 0.000013 { 0.03732
kde (s01) 0.1 0.1224 { 0.0022 50 { 63512
eP 0.024 0.0230 { 0.0004 —

A [S]0 (mM) 25.72 { 0.48 —
B 28.53 { 0.50 —
C 25 24.63 { 0.45 —
D 19.50 { 0.71a —
E 16.67 { 0.75a —
A [E]0 (mM) 0.00346 { 0.00008 —
B 0.00492 { 0.00004 —
C 0.004 0.00387 { 0.00005 —
D 0.00418 { 0.00004 —
E 0.00400 { 0.00009 —
A Offset 00.006 { 0.001 —
B 00.023 { 0.001 —
C 0 00.010 { 0.001 —
D 00.019 { 0.001 —
E 00.008 { 0.001 —

Note. The concentrations of the inhibitor were 0, 1.5, 3, 4, and 4 nM for traces A–E, respectively.
a The substrate concentrations are not well defined by progress curves collected at high inhibitor concentrations. The formal standard

error does not reflect the true uncertainty in this case. The 68% confidence interval extends to approximately 25 mM.

rate constants (0.92 mM01 s01 and 0.0019 s01, Kd 4 nM) is to illustrate the capability of DYNAFIT to handle
concentration jump experiments.observed under different physical conditions (31), al-

beit in a similar experiment, where two progress curves
with and without preincubation of the enzyme were

Example 3: Preexisting Isomerization Equilibriacombined for analysis. This combination of two other-
wise identical progress curves, one with preincubation This example is a variation on the concentration jump
and one without it, has been shown theoretically (32) experiment described above. Here the unknown composi-
as the most effective experimental design for measur- tion at the beginning of the assay is determined by isom-
ing the association and dissociation rate constants. erization equilibria, instead of association/dissociation

When the reaction step ES ` FS was omitted from equilibria. The problem arises typically in fitting tran-
the mechanism in Scheme 2, the data and the simpli- sient inhibition data (Fig. 3) to a model which includes
fied fitting model did not match. The step represents a rapid interconversion between two or more different mo-
nonproductive isomerization of the ternary Michaelis lecular forms of the inhibitor, such as rotational isomers,
complex, possibly due to subunit exchange. Remark- or different protonation states (Scheme 3).
ably, when the rapid mechanical stirring was turned The best-fit model parameters (Table 3) suggest that
off, the progress fit the simpler kinetic mechanism the transient phase in the inhibition kinetics could be
without nonproductive isomerization (data not shown). caused by a minor molecular form of the inhibitor (e.g.,
These results do not mean that the mechanism in a minor conformer) binding to the enzyme, while the
Scheme 2 is necessarily correct. The anomaly in HIV rest of the inhibitor (96%) binds much less strongly.
proteinase kinetics, a denaturation introduced by me- Even though the interconversion between the active
chanical stirring, might be explained by another un- and the inactive molecular forms of the inhibitor is
known molecular mechanism. It is not our aim to inves- virtually infinitely rapid, as would be the case for freely

interconverting conformers, a transient phase is detect-tigate that mechanism. The sole purpose of Example 2
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FIG. 1. Global least-squares fit of progress curves collected during FIG. 2. Global least-squares fit of progress curves collected during
fluorescence assays of HIV proteinase [the paired progress curveirreversible inhibition of the proteinase from HIV (nominal concen-

tration 0.004 mM). The enzyme was the last added component in method (32)]. Curve A, a 5-ml aliquot of the concentrated proteinse
(stock 1.5 mM) was added into 1.495 ml of substrate solution (10 mM)the assay. Inhibitor concentrations were held fixed at their nominal

values: 0 mM (A), 0.0015 mM (B), 0.003 mM (C), and 0.004 mM (D and in the rapidly stirred assay buffer. Curve B, the diluted proteinase
(5 nM) was equilibrated for 15 min in 1.485 ml of the assay bufferE). The nominal concentrations of the substrate (25 mM) and enzyme

(0.004 mM) in each assay were optimized within{10% titration error. under rapid stirring, and the reaction was started by the addition
of the substrate (15 ml, stock 1.0 mM). Throughout the assay, theFluorescence at Time 0 was also optimized for each assay. For com-

parison with FITSIM (see Fig. 5), the initial fluorescence signals were reacting mixture was continuously stirred in the cuvette compart-
ment. For details see text; the numerical results are summarized inset to zero (baseline subtraction). For details see text; the numerical

results are summarized in Table 1. Table 2.

noncompetitive, tight-binding inhibition. The initialable nevertheless. The reason is that the population of
velocities were measured by using a method describedthe actively binding form is so small that diffusion con-
elsewhere (33).trol plays a role. It is possible that other mechanisms

The numerical results of fitting the data in Fig. 4 tocould explain the experimental data. The purpose of
the model in Scheme 4 are summarized in Table 4.this paper is not to decide which is the most plausible
Binding of the inhibitor to the enzyme monomer proba-mechanism. The only goal is to demonstrate that the
bly does not occur, because the fitted value of the corre-computer program DYNAFIT, unlike other similar
sponding dissociation constant MI r M/ I is very muchtools, can handle kinetic mechanisms that include pre-
larger than the dissociation constant for the EI com-existing equilibria with unknown isomerization rate
plex. Similar results were obtained when the fittingconstants.
model included the binding of the inhibitor to the Mi-
chaelis complex ES. The conclusion is that the tight-

Example 4: Analysis of Initial Velocities

This example illustrates the fitting of initial veloci-
ties from enzyme assays to a molecular mechanism for
which a classical rate equation cannot be derived. The
question was whether observed dose–response curves
for a tight-binding inhibitor (Fig. 4) could be consistent
with binding to the inactive, monomeric form of the
partially dissociated enzyme (Scheme 4). This simulta-
neous binding to the inactive monomer and to the ac-

SCHEME 2tive dimer would be a special case of the ‘‘mixed-type’’
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TABLE 2

Results of the Least-Squares Fit of Progress Curves Shown
in Fig. 2 to the Kinetic Model Shown in Scheme 2

Dataset Initial
(trace) Parameter value Fitted value

kmd (mM01 s01) 0.2 0.609 { 0.014
kdm (s01) 0.002 0.0085 { 0.0004
kon (mM01 s01) 100 —
ks (s01) 300 250 { 72
kcat (s01) 10 10.29 { 0.21
kd1 (s01) 0.004 0.00367 { 0.00012
kd2 (s01) 0.002 0.00166 { 0.00008
eP 1.93 —
[S]0 (mM 30 —

A [E]0 / 2[M]0 (mM) 1.5a —
B 0.005b —
A Offset — c 2.418 { 0.004
B — c 2.591 { 0.005

a Enzyme was added last. The distribution between the monomeric
and the dimeric forms of the enzyme at the beginning of the assay
was computed automatically from the total enzyme concentration in
the stock ([E]0 / 2[M]0) and the dissociation constant Kd Å kdm/kmd.
The initial concentration of M and E in the assay was computed from
the concentration in the stock divided by the dilution ration (1:300).

FIG. 3. Global least-squares fit of progress curves collected duringb Substrate was added last. The dilution by substrate stock was
transient inhibition of the proteinase from HIV (nominal concentrationneglected, so that the dilution ratio was taken as 1:1.
0.030 mM). The enzyme was the last added component in the assay.c The initial estimate of the offset was made automatically, by
Inhibitor concentrations were held fixed at their nominal values: 0using the first datapoint on each progress curve.
mM (A), 0.040 mM (B, C), and 0.060 mM (D, E), as was the substrate
concentration (10 mM). The nominal concentration of the enzyme (0.030
mM) in each assay was optimized within {10% titration error. Fluores-
cence at Time 0 was also optimized for each assay. For details see text;binding inhibitor is strictly competitive with the sub-
the numerical results are summarized in Table 3.strate and does not interact with the enzyme monomer.

DISCUSSION
Example 1 could be solved by the KF method at leastThe most widely used programs for computational
in principle. In practice, however, FITSIM failed dueenzyme kinetics are KINSIM (1) for simulations and
to the inability to take into account titration errors.FITSIM (2) for least-squares fitting. FITSIM, which
Figure 5 shows that a match between the experimentalutilizes KINSIM to simulate progress curves during
data (the jagged curves) and the theoretical model (thenonlinear least-squares regression, has been used in
smooth curves) was not achieved. Under such circum-about a dozen laboratories to study the dihydrofolate
stances the examination of the fitting parameters isreductase (34), adenosine deaminase (35), HIV prote-
meaningless. Nevertheless, the KF method suggestsase (36) and reverse transcriptase (37), bacterial (38)
that the irreversible inhibitor has an initial bindingand firefly luciferase (39), alcohol dehydrogenase (40),
constant of 0.0001 { 0.3 nM and a deactivation ratethrombin (41), phtalate dioxygenase reductase (42),
constant of 50 { 63000 s01. The uncertainties of fittingDNA helicase (43), and gyrase (44). Other regression

programs based on numerical integration of differen-
tial equations have been described recently, such as
DNRP-RKF (45), KINLSQ (46), FLUSIM (47), SCIEN-
TIST (SciTech Intl.), and PROPHET [BBN Software
Products Inc., see for example (48)]. Most of these pro-
grams are not generally applicable to an arbitrary ki-
netic mechanism, represented symbolically by chemi-
cal equations, or are not readily available in the public
domain. Therefore the merits of DYNAFIT are dis-
cussed below by way of comparison with KINSIM/FIT-
SIM, further abbreviated as the KF method.

SCHEME 3Of the four example problems described above, only

AID AB 9572 / 6m16$$$303 05-13-96 19:48:10 aba AP: Anal Bio



PETR KUZMIČ266

TABLE 3

Results of the Least-Squares Fit of Progress Curves Shown
in Fig. 3 to the Kinetic Model Shown in Scheme 3

Dataset Initial
(trace) Parameter value Fitted value

kmd (mM01 s01) 0.1 —
kdm (s01) 0.001 —
kon (mM01 s01) 100 —
ks (s01) 300 374.8 { 3.5
kcat (s01) 10 7.19 { 0.11
kp (s01) 500 1294.3 { 7.9
kji (s01) 1000 —
kij (s01) 20 42.06 { 0.77
ki (s01) 0.001 0.00197 { 0.00004
eP 0.7 0.682 { 0.001
[S]0 (mM) 10 —

A [E]0 (mM) 0.030 0.0336 { 0.0006
B 0.030 0.0270 { 0.0005
C 0.030 0.0265 { 0.0005
D 0.030 0.0264 { 0.0007
E 0.030 0.0281 { 0.0007
A Offset —a 4.794 { 0.010
B —a 5.796 { 0.010
C —a 5.600 { 0.011
D —a 5.091 { 0.013
E —a 4.751 { 0.013 FIG. 4. Least-squares fit of initial velocities for HIV proteinase

inhibition by a substrate analog. The concentrations of the substrate
Note. The concentrations of the inhibitor were 0, 40, 40, 60, and were 20 mM (circles), 40 mM (squares), 80 mM (triangles up), and 120

60 nM for traces A–E, respectively. mM (triangles down). The nominal enzyme concentration was 8 nM;
a The initial estimate of the offset was made automatically, by the optimized value was 5.9{ 0.4 nM. For details see text; the numer-

using the first datapoint on each progress curve. ical results are summarized in Table 4.

differential equations, and an example from industrialparameters are merely the formal standard errors (14,
chemical kinetics, is presented in a classic monograph15) and not true confidence intervals, but even so the
on nonlinear regression (49). Published examples oferrors are unreasonably large for the analysis to be
biochemical data also show that when titration errorsacceptable. The best-fit values of rate constants ki and
are neglected, the global analysis of multiple progresskde (Table 1) determined by DYNAFIT or FITSIM differ
curves cannot be successful (46). When the publishedby factors of 8300 and 410, respectively. The KF
data (46) were reanalyzed by using DYNAFIT, themethod hugely overestimated the potency of the inhibi-
match between the data and the model improved owingtor, both in terms of the binding constant and in terms
to the adjustable concentrations. The same is true forof the deactivation rate constant.
other published reports in which FITSIM was used [seeBoth in using DYNAFIT and in using FITSIM, the
for example the lower three progress curves in Fig. 1same rate constants were considered as globally opti-
of Ref. (38)].mized fitting parameters. The main difference is that

The necessity of allowing for titration errors is madein DYNAFIT we do not rigidly insist on the nominal
intuitively obvious by a thorough examination of Fig.values of concentrations. Instead, recognizing that bio-
1. In the irreversible inhibition assays represented bychemists make titration errors, each curve in Fig. 1 was

assigned certain locally adjustable fitting parameters,
namely the concentrations of the enzyme and the sub-
strate in each assay. This flexibility, introduced by
treating concentrations as partially unknown within
10% titration error, allowed DYNAFIT to match the
data and the model reasonably well and come up with
acceptably small uncertainties of inhibition constants
(Table 3).

The treatment of certain concentrations as partially
unknown stems from theory as well as from practical

SCHEME 4experience. The theory of fitting kinetic data to sets of
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TABLE 4 when all the inhibitor was bound, the reaction could
not proceed further and the progress curve became flat.Results of the Least-Squares Fit of Initial Velocities Shown

It is important to note that we made an arbitraryin Fig. 4 to the Kinetic Model Shown in Scheme 4
choice of which reactant is treated as being affected

Round of Initial Fitted by titration errors (the enzyme) and which reactant is
analysis Parameter value value treated as if its concentration was known exactly (the

inhibitor). In this particular test example, treating bothI kmd (mM01 s01) 0.1 —
kdm (s01) 0.001 0.00009 { 0.00299 concentrations as unknown would lead to an increase
kon (mM01 s01) 100 — in the standard errors of fitting parameters. The im-
ks (s01) 20000 12050 { 26530 portant fact is that titration errors must be admitted
kcat (s01) 4 3.33 { 0.83

for at least one of the reactants.ki (s01) 0.1 0.08 { 0.23
As for the test Example 2 above, a comparison withki1 (s01) 1 106 { 4.9 1 1012

[E]0 (mM) 0.005 0.0060 { 0.0072 KINSIM/FITSIM is not possible, because these pro-
II kmd 0.1 — grams are incapable of analyzing concentration jump

kdm 0.001 0.00004 { 0.00195 experiments for the following reason. FITSIM requires
kon 100 —

that the investigator provide the initial concentrationks 20000 12,440 { 24,630
of each chemical species at the beginning of the assay.kcat 4 3.38 { 0.58

ki 0.1 0.08 { 0.23 In the test Example 2, however, the initial composition
ki1 1000000 — of the monomer/dimer mixture is not known. Only the
[E]0 0.005 0.0059 { 0.0070 total concentration of the enzyme is known, at leastIII kmd 0.1 —

within a certain titration error, but we do not know howkdm 0.0005 —
the total enzyme is distributed between the monomerickon 100 —

ks 20000 12,380 { 410 and dimeric forms. This distribution depends on the
kcat 4 3.37 { 0.24 values of association and dissociation rate constants,
ki 0.1 0.080 { 0.005 which are not known in advance. In fact, the very pur-ki1 1000000 —

pose of the experiment is to determine them.[E]0 0.005 0.0059 { 0.0004

traces A and B, the substrate was completely con-
sumed. This is manifested by the fact that the catalytic
reaction came to a complete halt at the end of both
assays. Because the substrate concentrations were the
same nominally, the total fluorescence changes in these
two experiments should be the same also. Note how-
ever that the total change of fluorescence was about
5% lower for trace B, in comparison with trace A. This
can be explained if the experimenter delivered 5% less
substrate into the assay B compared with assay A.
Such a 5% titration error is comparatively large but
not unusual.

Another striking illustration is provided by traces D
and E. Supposedly these two assays are exact repli-
cates, where both the enzyme and the inhibitor were
nominal at 0.004 mM, but the shape of trace D is clearly
different from that of trace E. The fitting parameters
in Table 1 show that this difference is explained by a
mere 2% difference in concentrations. In the case of
trace D, the enzyme concentration was about 2% higher
than the inhibitor concentration, leaving a nonnegligi-
ble amount of the catalyst after all inhibitor was irre-

FIG. 5. Global least-squares fit by using FITSIM of progress curvesversibly bound. That is why the reaction did not com-
collected during irreversible inhibition of the proteinase from HIVpletely stop, and trace D continues to rise, showing
(nominal concentration 0.004 mM). The enzyme was the last addedongoing catalysis by the protease. In the case of trace component in the assay. All concentrations were held fixed at their

E, the amount of the inhibitor truly matched (point of nominal values. For details see text; the numerical results are sum-
marized in Table 1.equivalence) or even exceeded the enzyme, so that
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DYNAFIT approaches the problem as follows. The species participating in 128 individual reaction steps.
The molecularity of the reaction steps in the mecha-investigator provides an initial estimate of the associa-

tion and dissociation rate constant and the total con- nism may be in the range from zero to four. The data
simulation module utilizes the normal or Gaussian dis-centration of each reactant. In each step of the least-

squares fit, equilibrium constants are calculated as tribution of experimental noise. The present version of
DYNAFIT cannot handle biochemical reactions duringratios of rate constants (e.g., the dissociation rate con-

stant KD Å koff/kon). Then the composition of the pre- which the pH, ionic strength, temperature, or pressure
changes over time.equilibrated mixture is computed from the equilibrium

constants, by solving a system of simultaneous alge- The program consists of 33,558 lines of source code
written in the ANSI Fortran-77 language. It can bebraic equations (8). The resulting equilibrium composi-

tion is taken as the starting composition for the dy- used on hardware platforms ranging from desktop per-
sonal computers (both the IBM-PCs and the Macintoshnamic phase of the assay, after first reducing all

equilibrium concentrations by the appropriate dilution models) to workstations (S.G.I., IBM RISC/System
6000, DEC Alpha) to mainframes (VAX) to supercom-factor. This is the concentration jump, in which stock

solutions of reactants are mixed, and thus all concen- puters (Cray Y/MP and C90). For an efficient execution
of DYNAFIT, desktop personal computers are requiredtrations are instantaneously decreased due to dilution.

The time course of the ensuing reaction is computed as to have installed at least eight million bytes of random-
access memory and special hardware for floating-pointin the usual manner, by solving a system of differential

equations. In the course of the iterative least-squares arithmetic (math coprocessor). A typical example is a
desktop IBM-PC-compatible machine equipped withregression, the simulated progress curves are com-

pared with the experimental data, and a better esti- the Intel i486 or Pentium processor or a Macintosh
computer with the Motorola MC68040 or PowerPC 604mate is made of the association and dissociation rate

constants. Importantly, new values of rate constants processor. The performance of different computers run-
ning DYNAFIT is shown in Table 5.lead to new values of the equilibrium dissociation con-

stants, which implies that a new initial composition of As can be seen from Table 5, the truncation and
round-off errors caused the least-squares fit to takethe preequilibrated mixture must be computed. Thus,

DYNAFIT shuttles between solving multiple simulta- different numbers of iterations not only on different
machines, but also on the same computer but using twoneous equilibria, as systems of algebraic equations, and

solving the reaction time course, as systems of differen- different compilers. This subtle machine dependence is
a manifestation of the very large number of elementarytial equations, arriving each time at a different esti-

mate of the starting composition. arithmetic operations that are involved in each fit. The
differences are caused mostly by the different designsIn the case of the test Example 3, a comparison with

the KF method is not possible either, because that of the special hardware and the low-level software for
floating-point arithmetic. The most precise resultsmethod cannot analyze preexisting isomerization equi-

libria for a similar reason as in Example 2. In particu- were obtained on the Cray supercomputer, because
that machine can represent floating-point numbers bylar, the KF method requires that the exact composition

at the beginning of the assay be known beforehand. the largest number of bits. Personal computers without
the special math coprocessor, including some PowerPCConsequently, it cannot treat isomerization rate con-

stants as adjustable parameters. As for test Example Macintosh models, or computers with low-grade central
processing units such as Intel 80386 or Motorola 680304, the KF method cannot be used, because it has no

capability of analyzing initial velocities. are unsuitable for running DYNAFIT. Not only do the
computation times increase beyond practical limits, for
example, the test Example 1 took 18 h of continuous

PROGRAM DESCRIPTION
computation on a Macintosh SE30, but also the severe
loss of precision on low-grade machines causes the com-This section describes the basic technical parameters

of DYNAFIT, the required computer hardware and op- putation to run in circles.
The input for DYNAFIT are ASCII text files and aerating systems, the kinds of input data that are used,

and the types of output generated. system of interactive on-screen menus. The program
utilizes three different types of input for each run.DYNAFIT can simulate or fit up to 16 progress

curves in a global dataset, which can contain a total of The first type of ASCII input files are the experimen-
tal data. Both the progress curves and the initial ve-16,000 datapoints. An unlimited number of individual

progress curves, each of them containing up to 1500 locity data are arranged in columns (e.g., time and
absorbance or concentration and velocity). The pro-datapoints, can be simulated or fitted in one run. Initial

velocity data may contain up to 1024 datapoints, with gram can analyze progress curves from uniresponse
or multiresponse observations (e.g., simultaneousone or two simultaneously varied concentrations. The

reaction mechanism may contain up to 64 chemical spectrophotometry at different wavelengths). The
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TABLE 5

Performance of Different Computers Running the Program DYNAFIT

Computer Example 1 Example 2 Example 3 Example 4 Parametera

i486b 25/43/78 25/51/87 38/28/85 8/0/9 n
10.76 1.274 8.724 0.3242 t
1.56133 0.388029 1.78933 21.3586 x2

i486c 24/31/66 25/51/87 100d/44/191 8/0/9 n
7.32 1.105 16.88 0.4440 t
1.55028 0.388109 1.74924 21.3586 x2

Pentiume 20/30/61 25/51/87 100d/45/194 13/22/44 n
2.421 0.4222 6.420 0.2702 t
1.55114 0.398450 1.74926 21.8413 x2

Mac Quadraf 26/51/92 37/68/120 100d/45/195 13/22/44 n
24.79 4.322 50.06 1.728 t
1.53865 0.387459 1.76265 21.8413 x2

Power Macg 49/78/159 25/49/84 100d/46/193 13/22/44 n
14.33 0.9942 15.44 0.7022 t
1.55255 0.388300 1.75217 21.8413 x2

SGI Irish 37/35/93 25/51/87 75/48/162 13/22/44 n
2.524 0.2760 2.971 0.2212 t
1.54560 0.388095 1.76902 21.8413 x2

DEC Alphai 33/36/89 25/51/86 100d/46/191 13/22/44 n
1.863 0.2155 3.538 0.1112 t
1.54518 0.388288 1.75445 21.8413 x2

IBM RISC j 18/31/59 25/51/86 100d/46/191 8/0/9 n
1.476 0.2581 4.230 0.1437 t
1.53877 0.388097 1.75721 21.3586 x2

Cray singlek 88/105/247 n
4.774 — — — t
1.58396 x2

Cray doublel 19/42/83 25/51/86 100d/45/93 8/0/9 n
2.326 0.2813 4.523 0.1728 t
1.53932 0.388052 1.75001 21.3586 x2

a n, number of iterations/subiterations/function evaluations in the Levenberg–Marquardt–Reich least-squares fitting algorithm; t, wall-
clock execution time in minutes; x2, final reduced x2.

b A generic PC-compatible computer equipped with an Intel 80486/DX2 processor running at 66 MHz under the DOS 6.22 and Windows
3.1 operating system. Compiled with Microsoft 32-bit Fortran PowerStation ver. 1 (compiler flags: /G4/Ox/Op/D ‘‘NDEBUG’’).

c Compiled with Watcom Fortran-77 ver. 10.5 (compiler flags: -sa-al-ot).
d Regression was terminated due to the lack of convergence.
e International Bussines Machines Corp., Model PC-750, Intel-Pentium processor running at 90 MHz under the Windows 95 operating

system. Compiled with Watcom Fortran-77 ver. 10.5 (compiler flags: -sa-al-ot).
f Apple Computer, Model Quadra 840av, Motorola 68040 processor plus 68881 math coprocessor running at 25 MHz under MacOS 7.1.

Compiled with Language Systems Fortran ver. 3.3 (compiler flags: -bkg Å 2 -opt Å 1 -mc68040-FPU -saveall).
g Apple Computer, Model Power Macintosh 8500, IBM–Motorola PowerPC 604 processor plus math coprocessor running at 120 MHz

under MacOS 7.5. Compiled with Language Systems Fortran for Power Macintosh ver. 1.0 (compiler flags: -bkg Å 2 -opt Å 1 -saveall).
h Silicon Graphics Inc., Model Iris Indigo, MIPS-4000 processor running at 100 MHz under the IRIX 5.3 Unix operating system. Compiled

with the SGI f77-compiler (flags: -mips2 -static -O).
i Digital Equipment Corp., Alpha processor running at 150 MHz under the DEC OSF/1 2.1B Unix operating system. Compiled with the

DEC f77-compiler (flags: -O2).
j International Bussines Machines Corp., RISC System/6000 Type 7013 Model 580, IBM–Motorola PowerPC 604 processor running at

120 MHz under the AIX 3.2 Unix operating system. Compiled with the xlf-compiler (flags: -O).
k Cray Computers, Model C90 eight-processor supercomputer running under the UNICOS 8.0.4 operating system. Compiled with the

Cray Research, Inc. cf77-compiling system (flags: -Wf‘‘-dp -a static’’ -Zv). Floating point numbers represented in the Cray single-precision
64-bit format.

l As above, with compiler flags: -Wf‘‘-a static’’ -Zv. Floating point numbers represented in the Cray double-precision 128-bit format.
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input script files for fitting initial velocities (test Exam-
ple 4) and for fitting progress curves (test Example 1),
respectively. The order of sections, denoted by square
brackets in the script file, is entirely arbitrary. Only a
few rules apply to the arrangement of items within
each section. DYNAFIT thus utilizes a rudimentary
scripting language with loose syntax and a small vocab-
ulary consisting of keywords such as ‘‘file,’’ ‘‘column’’
(in a text file), ‘‘concentration,’’ ‘‘equilibrate,’’ ‘‘error,’’
‘‘linear,’’ or ‘‘delay.’’

On personal computers (IBM-PC and Macintosh),
DYNAFIT generates high-resolution on-screen color
graphics. On the Unix workstations and mainframes,
DYNAFIT produces rudimentary graphical patterns
composed of letters, numerals, and other symbols in
the ASCII character set.

The results of fit are written on the disk as tab-de-
limited ASCII text files, so that many computer pro-
grams for scientific graphics can be used to produce
publication-quality illustrations. In addition, all graph-
ical images produced by DYNAFIT are written on disk
as encapsulated PostScript files (50) suitable for view-
ing or printing on PostScript devices. For example,
Figs. 1 through 4 were automatically generated by DY-FIG. 6. DYNAFIT input data for Example 4. Additional input con-

sists of a four-column ASCII text file, as indicated in the ‘‘[velocity]’’ NAFIT in the PostScript format.
section. The first two columns contain the concentrations of the inhib-
itor and the substrate, the third column holds the initial velocity, and
the fourth column contains the standard error of each measurement
computed from replicates.

readings of time can be nonevenly spaced, and differ-
ent progress curves in a global dataset might contain
different numbers of datapoints. Such technical de-
tails are important for the practical usefulness of a
data analysis program. For example, FITSIM can be
used only with progress curves that contain the same
number of equally spaced datapoints. To satisfy this
requirement, some users of FITSIM made up artifi-
cial datapoints by interpolation (44).

The second type of input are text files which store
miscellaneous control parameters, approximately 100
in total, such as how many iterations are to be per-
formed in the nonlinear least-squares fit and what are
the desired convergence tolerances. Each problem can
be assigned different sets of control parameters.

The third type of input data are script files which
describe the reaction mechanism and the initial esti-
mates of fitting parameters and identify the location of
data files in the computer’s file system. File names are
freely interchangeable between the DOS/Windows,
Macintosh, and Unix file naming conventions. Thus,
for example, ‘‘."TEST"FILE.TXT’’ (DOS and Windows),
‘‘øTEST:FILE.TXT’’ (Macintosh), and ‘‘./TEST/FI
LE.TXT’’ (Unix) can substitute for one another. This FIG. 7. DYNAFIT input data for Example 1. Additional input con-
allows portability of data files from one type of com- sists of two-column ASCII progress curve files, as indicated in the

‘‘[data]’’ section.puter to another. Figures 6 and 7 show examples of
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FIG. 8. Evolution in time of the reaction velocities or derivatives of progress curves. (a) Curves A–E are first derivatives of curves A–E
in Fig. 1. Note that curves B and C show more clearly the biphasic reaction. In the first phase the rate decreases rapidly due to the covalent
binding of the irreversible inhibitor. In the second phase the rate decreases less rapidly due to substrate depletion. Also note that the
residual velocity is greater than zero for curve D, because 2% less inhibitor than the enzyme was present in the assay. (b) Curves A and
B are first derivatives of curves A and B in Fig. 2. The lag phase, or inflection point, on the convex progress curve B in Fig. 2 is manifested
more clearly, as a maximum on the derivative curve B. (c) Curves A–E are first derivatives of curves A–E in Fig. 3. See comments in the
text.

Program DYNAFIT generates optionally the first de- d [M ]/dt Å 02kmd[M ][M ] / 2kdm[E ] [1]
rivative plots of progress curves (Fig. 8). Such deriva-

d [P]/dt Å kr[ES] 0 kon[P][E ] / kp[EP] [2]tive plots, produced also by the program FLUSIM (47),
are useful in detecting subtle features in the original d [S ]/dt Å 0kon[S ][E ] / ks[ES] [3]
progress curves. For example, Fig. 8b shows how the

d [I ]/dt Å 0kon[I ][E ] / ki[EI] [4]slopes of progress curves in Fig. 2 change over time.
This derivative plot clearly shows that trace B in Fig. d [ES]/dt Å kon[S ][E ] 0 ks[ES] 0 kr[ES] [5]
2 initially speeds up, due to the substrate-induced as-

d [EP]/dt Å kon[P][E ] 0 kp[EP] [6]sembly of the HIV proteinase dimer (30), and then
slows down, due to substrate depletion and enzyme d [E ]/dt Å ka[M ][M ] 0 kd[E ] 0 kon[S ][E ]
denaturation. The derivative plot in Fig. 8a shows that

/ ks[ES] / kr[ES] 0 kon[P][E ] / kp[EP]the slope of trace A in Fig. 1 is decreasing markedly
immediately from the very beginning of the assay. This 0 kon[I ][E ] / ki[EI ] [7]
contradicts the intuition. Many enzymologists would
probably claim that the initial part of the progress d [EI ]/dt Å kon[I ][E ] 0 ki[EI ] 0 kde[EI ] [8]
curve A in Fig. 1 is linear (a region of constant velocity),

d [EJ ]/dt Å kde[EI ] [9]but the derivative trace A in Fig. 8a shows that this is
not so. The derivative or velocity is changing rapidly
from the start. This is even more pronounced in trace In summary, program DYNAFIT is a new computa-

tional tool for biochemical kinetics which extends theA of Fig. 8c, which corresponds to trace A in Fig. 3.
Also note that the traditional analysis of transient or capabilities of the KF method (1, 2) in at least four

ways. First, DYNAFIT can analyze initial velocity data.slow-binding inhibition requires that progress curve B
in Fig. 3 contain a region of constant or steady-state Second, it can treat concentrations as adjustable fitting

parameters. This is necessary not only to achieve avelocity. However, the derivative trace B in Fig. 8c
shows that in actuality the velocity keeps decreasing close fit of multiple progress curves, but also it can be

used for active-site titrations. Third, the program candue to substrate depletion.
DYNAFIT generates LATEX files for direct typeset- analyze progress curves from concentration jump ex-

periments and progress curves that reflect preexistingting (51, 52). After the reaction mechanism is trans-
lated from the symbolic form, the underlying mathe- isomerization equilibria. Finally, DYNAFIT can treat

as adjustable parameters certain instrumental proper-matical equations are derived and typeset. For
example, as the input script in Fig. 7 is processed, DY- ties, such as molar response coefficients (e.g., the spe-

cific molar absorbtivity) or background instrumentalNAFIT typesets not only Scheme 1 but also the corre-
sponding Eqs. [1] through [9]. signal (e.g., the baseline absorbance). Recently we uti-
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