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a b s t r a c t

Experimental data from continuous enzyme assays or protein folding experiments often contain hun-
dreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short,
the experimental data points might not be statistically independent. The resulting neighborhood corre-
lation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence,
certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might
indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoret-
ical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any
excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the
unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two
illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT
[P. Kuzmič, Anal. Biochem. 237 (1996) 260–273], freely available to all academic researchers from http://
www.biokin.com.

� 2009 Elsevier Inc. All rights reserved.

Introduction

Currently available laboratory instruments allow the digital
recording of many experimental data points during each individual
enzyme assay, or from a variety of biophysical experiments. For
example, if a conventional kinetic experiment is allowed to pro-
gress for 15 min, while recording the absorbance or fluorescence
signal every second, the complete data trace will contain 900 data
points. The abundance of experimental data points is even greater
when using rapid-kinetics techniques, where the sampling interval
might be in the millisecond range. It is not unusual to encounter
data traces containing tens of thousands of individual data points.

The particular statistical technique typically used for the inter-
pretation of enzyme kinetic data is the nonlinear least-squares
regression. Several excellent reviews of the least-squares method
have been published specifically for biochemical audiences [1–3].
One crucially important assumption of the least-squares method
is that each individual data point is statistically independent of all
the other data points in the complete data set.

This article is concerned with those situations where the sam-
pling interval might be too short for the experimental data points

to be truly statistically independent. The loss of statistical indepen-
dence may occur due to correlated fluctuations in the instrument’s
electronic circuitry, or short-term fluctuations in the concentra-
tions of reactants, or a number of other possible causes. Whatever
the underlying cause, it is often found in practice that densely
spaced recordings from continuous enzyme assays or protein fold-
ing experiments include correlated ‘‘spikes” or ‘‘bumps” in the re-
corded signal (fluorescence, absorbance, and the like). The
presence of such spikes inevitably distorts the results of residual
analysis. As a consequence, standard statistical tests to assess the
goodness-of-fit will fail, even if the experiment essentially does
agree with the postulated theoretical mechanism.

This article attempts to alleviate the problem in diagnosing the
goodness-of-fit due to the statistical dependence among individual
data points. Our approach relies on purposely analyzing only a
suitably selected subset of the residuals, such that any neighbor-
hood correlation is removed. This is accomplished by evaluating
two standard criteria of goodness-of-fit, namely, the runs-of-signs
test and the autocorrelation function. Importantly, the two statis-
tical criteria are computed not only for the original (complete)
data set, but also separately for every nth residual (n = 2, 3, 4,
and so on).

If the underlying kinetic mechanism does match the given
experimental data, these two statistical criteria rapidly improve
on selecting out every second (third, fourth, etc.) residual
of fit. In contrast, if the underlying theoretical model deviates
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1 Present address: Novartis AG, Basel, Switzerland.

Analytical Biochemistry 395 (2009) 1–7

Contents lists available at ScienceDirect

Analytical Biochemistry

journal homepage: www.elsevier .com/locate /yabio



Author's personal copy

systematically from the available data, then even analyzing pro-
gressively more widely spaced subsets of residuals does not im-
prove the goodness-of-fit. In this way, we can eliminate any
possible distortions in the results of standard statistical tests intro-
duced by statistical dependence between closely spaced data
points. The newly proposed method is illustrated on two unrelated
examples: (1) a continuous fluorogenic assay of the HIV protease
[4]; and (2) the unfolding kinetics of the globular protein UMP/
CMP from Dictyostelium discoideum (UmpK), a nucleoside mono-
phosphate (NMP) kinase [5].

Theory

Mathematical model for substrate kinetics

The model equation for each progress curve analyzed in this re-
port is

f ðtÞ ¼ f0 þ rP cPðt þ DtÞ; ð1Þ

where f(t) is the fluorescence intensity at time t; f0 is the offset on
the signal axis (a property of the instrument); rP is the molar re-
sponse coefficient of the reaction product P; cP(t + Dt) is the concen-
tration of P at time t + Dt; and D t is the mixing delay time. The
mixing delay, in this case Dt = 5 s, is the time elapsed between
the start of the enzyme reaction (by mixing the substrate and en-
zyme stock solution) and the start of actually recording fluores-
cence intensities by the instrument (t = 0 in the recorded data
trace).

The product concentration at any arbitrary time, cP, is computed
from the initial (t = �Dt) concentrations of the enzyme, cð0ÞE , and
substrate, cð0ÞS , by solving an initial-value problem defined by a sys-
tem of simultaneous first-order ordinary differential equations
(ODE)2 derived from Scheme 1.

dcE=dt ¼ �k1 cE cS þ ðk2 þ k3ÞcES ð2Þ
dcS=dt ¼ �k1 cE cS þ k2 cES ð3Þ
dcES=dt ¼ þk1 cE cS � ðk2 þ k3ÞcES ð4Þ
dcP=dt ¼ þk3 cES: ð5Þ

The ODE system is integrated numerically [6].
The mathematical model defined by Eqs. (1)–(5) contains four

adjustable parameters, namely, the instrument offset f0; the molar
response coefficient rP; and the rate constants k2 and k3. The bimo-
lecular association rate constant was held as a fixed parameter at
k1 = 10 8 M�1 s�1, which corresponds to the approximate diffusion
limit in this particular class of molecules [7, p. 164]. All model
equations were automatically derived by the software system
DYNAFIT [6] from symbolic input listed in the Appendix.

Autocorrelation function of residuals

The autocorrelation function has been defined in slightly differ-
ent ways by various investigators [8, pp. 20, 49–50; 9, p. 37]. In this
work, we use the definition of Box and Jenkins [10, pp. 28–32]. For
lag or step h, the autocorrelation function Rh is defined as shown in
the equations

Rh ¼ Ch=C0 ð6Þ

Ch ¼
1

nD

XnD�h

i¼1

ri � �rð Þ riþh � �rð Þ ð7Þ

C0 ¼
1

nD

XnD

i¼1

ri � �rð Þ2; ð8Þ

where Ch is the autocovariance function; C0 is the variance function;
nD is the number of data points; ri is the residual for the ith data
point; and �r is the average residual.

The P values for the first autocorrelation coefficient (h = 1),
shown in Figure 3, were computed by evaluating the probability
that the standardized normal residual defined by

z1�a=2 ¼ R1
ffiffiffiffiffiffi
nD
p

ð9Þ

could occur by random chance, given the null hypothesis that z = 0.
A z value significantly different from zero means that the residuals
are nonrandom, which indicates a lack of fit between the experi-
mental data and the assumed fitting model.

Residual runs-of-signs test

The runs-of-signs test for the randomness of residuals has been
used in the literature in various modifications [9, pp. 36–37; 11–
13, pp. 259–260]. Let nD be the number of data points (which
equals the number of residuals) in a given progress curve; let n+

be the positive residuals; and nR the number of runs, or groupings,
of equal-sign residuals within the time series. For example, if the
pattern of signs in a series of residuals is +++- - - +++- - -, we have
12 residuals (nD = 12), six positive residuals (n+ = 6) and four runs
(nR = 4).

For any given number of residuals and positive residuals—
assuming that those residuals are distributed truly randomly—
the average expected number of runs and the associated variance
are defined by, respectively [9]

l ¼ 2nþ nD � nþð Þ=nD þ 1 ð10Þ
r2 ¼ ðl� 1Þðl� 2Þ=ðnD � 1Þ: ð11Þ

The standardized normal deviate is then defined by [13]

z ¼ ðnR � lþ 1=2Þ=r; ð12Þ

where the term 1/2 is a correction for continuity. The P values in
Fig. 3 were computed as probabilities that the standardized normal
deviates z could occur by random chance, given the null hypothesis
that z = 0. As above, a z value significantly different from zero means
that the residuals are suspect, and that the assumed theoretical
model does not fit the experimental data.

Experimental

Cloning, expression and purification

UmpK was cloned into a modified pET27 expression vector via
NcoI and BamHI restriction sites. The plasmid was transformed
into Escherichia coli BL21 DE3 cells. Protein expression was induced
with 0.1 mM IPTG at OD600 = 0.6, and the expression was allowed
to proceed for approximately 18 h at 20 �C. The purification of
UmpK from harvested cells was performed as described elsewhere
[5]. The correct mass of 21.9 kDa was confirmed by matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry.

Kinetic analysis of UmpK unfolding

UmpK unfolding kinetics were measured with a BioLogic
SFM400 stopped-flow apparatus connected to a MOS 450 optical

E + S E.S
k1

k2
E + P

k3

Scheme 1.

2 Abbreviation used: ODE, ordinary differential equations.
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system (BioLogic, Claix, France). Unfolding of native UmpK (20 lM)
was induced by rapid 10-fold dilution into different urea concen-
trations (>2 M). The final UmpK concentration of each measure-
ment was 2 lM in 50 mM Tris–HCl, pH 7.5, 100 mM Na2SO4, and
2 mM DTE at 25 �C. The kinetics were followed by intrinsic trypto-
phan fluorescence at k P 320 nm (long-pass filter from LOT-Oriel
GmbH, Darmstadt, Germany) on excitation at k = 296 nm. The
experimental data were recorded by the Bio-Kine data acquisition
software (BioLogic). In the statistical analysis by DYNAFIT [6], the
first 14 ms of the recorded data trace (average of three traces)
was treated as the dead time of the instrument.

Results

HIV protease: Complete set of residuals

The experimental data from a typical fluorogenic assay of the
HIV protease [4,14] are shown in Fig. 1. The enzyme reaction was
followed for 5 min, with sampling interval 0.5 s, resulting in 601
data points. Only the first 4 min (481 data points) of the assay
was statistically analyzed. The raw experimental data are shown
as the thin jagged curve; the thick solid curve in Fig. 1 represents
the best least-squares fit to the theoretical model, represented by
the system of Eqs. (1)–(5). The best-fit values of the model param-
eters and the corresponding formal standard errors were
f0 = 5.92 ± 0.02 RFU (relative fluorescence units); rP = 15.9 ± 0.03
RFU/lM; k2 = 193 ± 5 s�1; and k3 = 8.7 ± 0.2 s�1. The regression
analysis was performed using the software package DYNAFIT [6].

The inset to Fig. 1 shows the residuals of fit. The expanded detail
plot shows that the residuals apparently are not statistically inde-
pendent. Within each cluster of residuals, the fluorescence signal
seems to be rising and falling in a correlated fashion (an increase
in fluorescence seems more likely to occur if the fluorescence
intensity also increased at the immediately preceding data point,
and vice versa). The mutually correlated clusters seem to occur
in groups of approximately three to five data points.

The open circles in Fig. 2 display the autocorrelation function
for all residuals plotted in Fig. 1. The lag (h) on the horizontal axis

signifies the distance between data points. For example h = 1, or
unit spacing, corresponds to the neighborhood correlation coeffi-
cient R1 on the vertical axis (i.e., the autocorrelation between
two immediately neighboring residuals). Similarly, h = 4 and R4,
or four-point spacing, represent the correlation between pairs or
residuals separated by three other data points (residual numbers
1, 5, 9, 13, etc.).

The first autocorrelation coefficient (R1 according to Eq. 6) is
significantly larger than the 95% critical value represented by the
thick horizontal dashed lines (the thinner, gray horizontal lines
will be explained in the next section). Even the second, third, and
fourth autocorrelation coefficients (R2–R4, shown as the second
through fourth points from the left plotted in Fig. 2) are signifi-
cantly large. Thus, the residuals are strongly nonrandom. This nor-
mally indicates a lack of fit between the experimental data and the
presumed fitting model.

Similar results were obtained for P values derived from the
runs-of-signs test (Eqs. (10)–(12)). In particular, the inset to
Fig. 1 shows 481 residuals, 237 of which are positive, grouped in
138 runs. Based on the total number of residuals and the number
of positive residuals, the statistical theory predicts that the average
expected number of runs, and the corresponding standard devia-
tion, is 241 ± 11. The actual number of runs (nR = 138) is very much
smaller than the average expected number (l = 241 ± 11); the cor-
responding P value is practically indistinguishable from zero.
Again, the residuals appear strongly nonrandom, which usually
indicates a lack of fit between the data and the model.

The statistical analysis up to this point revealed an obvious con-
tradiction. On the one hand, the experimental data and the pre-
sumed theoretical model agree very well: on visual examination
of the main panel in Fig. 1, it is difficult even to distinguish the
raw data trace overlaid on the best-fit model curve. Even more
importantly, a visual examination of the residual plot also seems
satisfactory, because we do not see any obvious systematic pattern
in the residuals. Contradicting these observations, two indepen-
dent statistical tests for the randomness of residuals (namely, the
runs-of-signs test and the serial correlation function) seem to indi-
cate a serious lack of fit.
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Fig. 1. Experimental data from the fluorogenic assay of the HIV protease.
Experimental conditions: [E] = 10 nM; [S] = 1.0 lM. For complete experimental
details, see Ref. [4]. Inset: Residual plot. The solid dots represent every fifth residual
of the total 481 residuals.
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Fig. 2. Autocorrelation function for residuals of fit shown in Fig. 1. Open circles: All
481 residuals were analyzed. Gray squares: A subset of every fifth residual was
analyzed. The dashed lines represent the critical values of the neighborhood
autocorrelation coefficient, R1, at the 95% confidence level.
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The following section describes a possible remedy to these
contradictions.

HIV protease: Analysis of various subsets of the residuals

Both the autocorrelation function and the runs-of-signs test
indicate that our experimental data occur in statistically correlated
clusters. This violates one of the basic assumption of nonlinear
least-squares regression, namely, the assumption of statistical
independence between the experimental data points [1–3]. One
possible way to avoid this neighborhood correlation problem is
to analyze a suitably selected subset of the original residuals of fit.

An important insight for the development of this procedure is
provided by the serial correlation function, represented by the
open circles in Fig. 2. The first point plotted in Fig. 2, corresponding
to the neighborhood correlation coefficient R1 (lag h = 1), repre-
sents an autocorrelation value significantly higher than the critical
value. However, the fifth correlation coefficient R5 (lag h = 5) is
essentially equal to zero. In other words, there is virtually no cor-
relation within a subset of residuals composed of every fifth origi-
nal residual. This particular subset of residuals is shown by solid
filled circles in the residual plot (inset to Fig. 1).

The autocorrelation function for the 1/5 subset of the original
residuals is shown as gray squares in Fig. 2. Clearly, within this par-
ticular subset, the residuals show no autocorrelation, which indi-
cates statistical independence between individual data points.

Similar results are found on examining the runs-of-signs test for
the 1/5 subset of the residuals. The solid filled circles in Fig. 1 rep-
resent nD = 97 residuals, of which n+ = 45 have positive value.
Within the subset, there are 52 runs of equal sign residuals. Statis-
tical theory predicts that if the residuals were purely random and
normally distributed, with nD = 97 and n+ = 45 we should expect on
average 49.2 ± 4.9 runs. The observed number of runs (52) is even
higher than the average expected number (49), which means that
the 1/5 subset of residuals does appear completely random.

The goodness-of-fit criteria (autocorrelation function and runs-
of-signs test) were computed for all various equally spaced 1/N
subsets of the residuals, that is, every other residual (N = 2), every
third residual (N = 3), and so on. For each subset, we computed the
corresponding P values. The results are summarized in Fig. 3, in
which the solid circles represent the P values for the neighborhood
correlation coefficient R1, and the open circles represent the P val-
ues for runs-of-signs test. Both statistical criteria produce extre-
mely nonrandom values (P � 0) when all residuals are analyzed
(N = 1). As the spacing interval increases, the P values also increase,
until essentially perfect randomness is achieved at N = 5 (every
fifth residual analyzed).

Unfolding kinetics of UMP/CMP kinase

The results of fit from a typical protein unfolding kinetic exper-
iment are shown in Fig. 4. Native UmpK was diluted into 3.6 M
urea, and intrinsic tryptophan fluorescence intensity was moni-
tored for 5 s with 1 ms sampling interval (5000 data points). We
have established that the unfolding of UmpK follows the two-step
mechanism A ? B ? C [5]. The data were fit to the corresponding
theoretical model using the DYNAFIT [6] notation A B: k1;

B C: k2. The DYNAFIT software has automatically generated a
suitable system of simultaneous differential equations.

As in the fluorogenic assays of the HIV protease (see Fig. 1
above), the fluorescence intensities in the UmpK unfolding assay
display statistically significant serial correlation spanning approx-
imately five or six consecutive data points. The inset to Fig. 4 dis-
plays in greater detail these quasi-periodic oscillations in the
experimental signal, and makes clear that the experimental data
points are not statistically independent but instead occur in corre-

lated clusters. Correspondingly, the autocorrelation function com-
puted from all residuals of fit in Fig. 5 (top curve labeled ‘‘N = 1”)
shows very high values for lag h = 1 (neighborhood correlation
coefficient, R1) through h = 8. If the residuals of fit were truly
uncorrelated, the plot of the entire correlation function (for all val-
ues of lag h) would fit inside the bounds corresponding to the crit-
ical values (horizontal straight lines in Fig. 5) at the given
significance level (here, 95%).

When the residuals of fit in Fig. 4 were sampled with progres-
sively wider spacing, the serial correlation function quickly
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step unfolding mechanism A ? B ? C. For details, see Experimental.
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flattened out and, finally, at N = 7 (every seventh residual analyzed)
the neighborhood correlation coefficient R1 (plotted at h = 1) be-
came lower in absolute magnitude than the corresponding critical
value. The same was true for the remaining values of the autocor-
relation function (h = 2,3, . . . ,nD/2, where nD is the total number of
data points).

The results of fit from the same unfolding experiment to an
overly simple kinetic model, A ? B, are shown in Fig. 6. The resid-
uals of fit (lower panel in Fig. 6) show an easily detectable non-
random pattern. The autocorrelation function computed from all
residuals of fit in Fig. 7 (top curve labeled ‘‘N = 1”) again shows a
strongly nonrandom pattern, well outside the bounds depicted
by the critical values (horizontal straight lines in Fig. 7). Impor-
tantly, the goodness-of-fit does not improve as we start sampling
the residuals of fit in order to compute the autocorrelation function
from every second residual (N = 2), every third (N = 3), every fourth
(N = 4), and so on. No matter how much we increase the spacing of
the residuals, the first few values of the autocorrelation function
(h = 1,2,. . .) always remain outside the critical values delineated
by the horizontal lines in Fig. 7.

The runs-of-signs tests for the protein unfolding kinetics
showed the same pattern as was previously seen for the HIV pro-
tease substrate assays. Briefly, the runs-of-signs test according to
Eqs. (10)–(12) continued to show extremely low P values (too
few runs for the given number of data points) in the case of the
one-step mechanism A ? B, irrespective of the sampling interval.

In the case of the two-step mechanism A ? B ? C, the runs-of-
signs test did indicate a serious ‘‘lack of fit” when all residuals in
Fig. 4 were tested. Specifically, with the total number of data points
nD = 4987 and n+ = 2527 positive residuals, the statistical theory
predicts that, if the residuals were truly random, we would observe
on average 2494 ± 35 runs of equal signs. The residual plot in the
bottom panel of Fig. 4 contains only 632 runs of signs, and thus
the corresponding P value is essentially indistinguishable from
zero. However, when every seventh residual was analyzed
(N = 7), the total number of residuals was nD = 713, the number
of positive residuals was n+ = 360, and the number of runs was
nR = 372. The statistical theory predicts that if the residuals were

truly random, for nD = 713 and n+ = 360 there should be, on aver-
age, 357 ± 14 runs of equal signs. The observed number of runs
(nR = 372) was even higher than that prediction, and so it is
random.

Discussion

Currently available instrumentation techniques can easily gen-
erate thousands of data points in a single kinetic experiment, and a
number of advanced software systems are available to analyze this
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digital torrent. Following an early example set by the KINSIM pack-
age [15,16], some software systems such as DYNAFIT [6] allow the
investigator to specify the mathematical model by using a sym-
bolic notation. Indeed, entering ‘‘E + S = E.S = E.P = E + P” on the
keyboard is much easier for most experimentalists than deriving
the corresponding system of simultaneous differential equations.
This convergence of advanced digital instrumentation, increasingly
powerful computer hardware, and numerical data processing algo-
rithms has created what some researchers [17,18] fittingly de-
scribe as the ‘‘New Enzymology”.

One of the challenges of this ‘‘New Enzymology” is that certain
established data analysis techniques may no longer work, at least
not without appropriate modifications. This article addresses one
such situation, arising, specifically, in the analysis of residuals.
Residual analysis is one of the classic biochemical data analysis
techniques [9,11,12]. It is used to determine whether the postu-
lated fitting model, or mechanism, does adequately describe the
experimental data. If the residuals are sufficiently randomly dis-
tributed, we can conclude that the model fits well. If the residuals
appear nonrandomly distributed, we must conclude that the pos-
tulated theoretical model is suspect.

Fig. 1 presents a striking example of a contradiction created, in a
sense, by having ‘‘too many” closely spaced experimental data
points. We do know from many independent experiments that the
HIV protease follows the simple Michaelis-Menten mechanism,
shown in Scheme 1. More importantly, in the specific case of the
experiment shown in Fig. 1, the sum of squared deviations between
this model and the experimental data is so small that it is practically
indistinguishable from the random noise generated by the instru-
ment employed in this assay [4]. And yet, two different statistical
tests for the randomness of residuals had failed to confirm the valid-
ity of this independently established mechanistic model. Both the
runs-of-signs test [12] and the serial correlation test [9] produced
P values that nominally indicate a serious lack of fit.

This paradox is explained by the fact that the digitized fluores-
cence intensities, recorded in this case with a half-second sampling
interval, are not statistically independent as is required by the statis-
tical theory of least-squares regression. One possible solution to this
problem would be to collect more widely spaced (i.e., essentially,
fewer) experimental data points. In this particular example, the sta-
tistical correlation between neighboring fluorescence intensities be-
comes vanishingly small with data spacing Dt = 2.5 s (every fifth
data point actually analyzed). With this wider data spacing, it be-
comes feasible again to use residual analysis to discriminate be-
tween well-fitting and poorly fitting mathematical models.

Purposely reducing the number of experimental data points
may lead to undesirable loss of information, especially in the case
of highly ‘‘ill-conditioned” theoretical models. A prototypical
example of ill-conditioning is the multi-exponential model [19]
encountered in protein folding kinetics. Thus, according to the data
analysis method presented in this report, we retain the full data set
for the purpose of determining the best-fit model parameters.
However, in assessing the suitability of the fitting model—as mea-
sured by the degree of randomness in the residuals—we analyze
various progressively smaller subsets of the experimental data
points. If the theoretical model fits well, any neighborhood correla-
tion (essentially an artifact of the experiment due to the sampling
interval being too small) will quickly vanish. On the other hand, if a
model exhibits a bona fide discrepancy with the experimental data,
the randomness of residuals will not improve on filtering.

The results from the unfolding kinetics of UmpK illustrate that
when the presumed mathematical model and the experimental
data are in genuine disagreement, the filtering technique described
above will not remove the nonrandom characteristics of the resid-
ual of fit. In contrast, when the model and the data fundamentally
agree, the proposed residual filtering scheme will quickly improve

the statistical goodness-of-fit (as measured by the runs-of-signs
test and by the autocorrelation function).

One possible limitation inherent in the proposed method of
assessing the randomness of residuals is that it requires a relatively
large number of originally recorded data points. The runs-of-signs
test as defined by (Eqs. (10)–(12)) is statistically valid only for
nD > 20 [9,13], although special modifications of the test have been
designed for a smaller number of data points [12]. Therefore, it is
required that the kinetic traces contain at least several hundred
experimental data points.

As a matter of course, a data analyst should never place too
much significance on any one statistical test, or perhaps even on
two separate tests, such as the autocorrelation test and the runs-
of-signs test employed in this report. We have not discussed other
known statistical tests for normality, such as the Durbin–Watson
test for serial correlation [20,21], or other related statistical tests
[22,23].

All statistical tests described in this report have been incorpo-
rated into an updated version of the DYNAFIT software package
[6], which continues to be freely available to all academic research-
ers from http://www.biokin.com.

Acknowledgment

P.K. is indebted to Domenico Gatti (Wayne State University, De-
troit, MI, USA) for bringing to his attention the problem discussed
in this article and for many useful discussions. We thank Sarah
McCord for making helpful comments on the article.

Appendix A

The following DYNAFIT [6] script file will fit the experimental
data shown in Fig. 1 so the system of Eq. (1)-(5). The entire dataset
is used in the regression, but only every fifth residual is used to
compute the goodness-of-fit tests (AnalyzeEveryNthPoint = 5).

[task]

task = fit j data = progress
[mechanism]

E + S E.S : k1 k2

E.S E + P : k3

[constants] ; units = lM, s
k1 = 100, k2 = 100 ??, k3 = 10 ??

[concentrations] ; units = lM
[responses]

P = 2.57 ?

[data] ; units = s

directory ./hiv-protease/data/05-06-1994

extension txt | delay 5

file ex15 | offset auto ?

conc E = 0.010, S = 1

[output]

directory ./hiv-protease/output/fit-ex15

[settings]

Residuals | AnalyzeEveryNthPoint = 5

Filter | TimeMax = 240

Output | Autocorrelations = 1

[end]
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