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Abstract

The standard mathematical model for stepwise ‘‘slow-binding” enzyme inhibition ðE þ I�EI�EI�Þ assumes that the initial enzyme–
inhibitor complex EI is always at equilibrium with the free component species E and I . This assumption implies that the dissociation rate
constant ðEI ! E þ IÞ is infinitely higher than the isomerization rate constant for EI ! EI�. This paper presents a more general math-
ematical treatment, under the steady state approximation rather than the usual rapid-equilibrium approximation, whereby the two rate
constants for the disappearance of EI are allowed to be comparable in magnitude. Experimentally relevant illustrative examples include
discrimination between a single-step and a two-step mechanism for slow-binding inhibition kinetics.
� 2008 Published by Elsevier Inc.
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‘‘Slow-binding” reversible enzyme inhibitors are those
that display a characteristic lag, or transient phase, in
establishing their noncovalent bond to the target enzyme.
Of course, slow binding is a relative concept. Virtually
every enzyme inhibitor in existence can be forced to display
a pre-steady state kinetic transient, either by shortening the
observation time scale (e.g., in a stopped-flow instrument)
or by drastically lowering all analytic concentrations, such
that diffusion becomes rate limiting. This paper is con-
cerned with those slow-binding inhibitors that show kinetic
transients on the scale of seconds to minutes and even to
hours, at total concentrations that are typical for standard
in vitro enzyme assays (i.e., nanomolar to micromolar).

A necessary prerequisite for properly interpreting such
transient kinetic data is having available a suitable mathe-
matical model, that can be used for data fitting. Several
useful mathematical models for slow-binding kinetics have
been described in the literature (for review, see [1]). These
existing mathematical models fall into two categories.
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The first category of models, the most general and math-
ematically rigorous, consists of systems of simultaneous
first-order ordinary differential equations (ODEs)1. Such
systems of differential equations are very easy to derive
because they follow directly from the Law of Mass Action
[1], but they are exquisitely difficult to solve. Solving a sys-
tem of ODEs means calculating the concentration of reac-
tants at any given time after the start of the reaction. In
fact, the only way to solve a system of ODEs that typically
arises in slow-binding inhibition kinetics is to use a highly
specialized and numerically intensive computer algorithm.

The second category of existing mathematical models
for slow-binding inhibition consists of simple algebraic for-
mulas, that do not require intense iterative computations.
These are closed-form kinetic equations of type
y ¼ f ðt; pÞ, where t is reaction time, p are model parameters
such as total concentration and rate constants, and y is the
concentration of the given reactant. Such simple kinetic
equations can be derived only by placing more or less
severe restrictions or simplifying assumptions on the
1 Abbreviation used: ODEs, ordinary differential equations.
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hypothesized reaction mechanism. Relaxing one set of such
restrictions, while still retaining the convenience of a simple
algebraic formula as the final kinetic model, is the subject
of this article.

The reaction mechanism under investigation here is the
stepwise binding. The enzyme E and the inhibitor I are
assumed to form an initial complex, E:I , which subse-
quently rearranges to form the final complex E:J . The slow
rearrangement, or isomerization, of the enzyme–inhibitor
complex ðE:I�E:JÞ is assumed to be the essence of the
slow-binding kinetic transient. Cha [2] derived a kinetic
equation for the appearance of the reaction product under
the assumption that the inhibitor is only weakly bound to
the enzyme (no inhibitor depletion). Later, Williams and
Morrison[3] derived a more general kinetic equation, that
does take inhibitor depletion (‘‘tight binding”) into
account.

Both Cha’s rate equation [2] and the more general rate
equation proposed by Williams and Morrison [3] were
derived under a crucially important simplifying assump-
tion: both existing rate equations assume that the associa-
tion and dissociation of the initially formed enzyme–
inhibitor complex ðE þ I�E:IÞ is very much faster than
either the forward or the reverse isomerization steps
ðE:I�E:JÞ. This rapid-equilibrium approximation places
a severe limit on the applicability of the kinetic equations
for slow-binding that are currently in use.

This report describes an algebraic formula (a closed-
form integrated rate equation) that does not imply any
restrictions on the relative magnitude of rate constants
appearing in the stepwise enzyme–inhibitor binding mech-
anism. This adds another tool to the currently available
toolkit of mathematical models for slow-binding inhibition
[2,3]. The potential use of the newly derived mathematical
model is illustrated on several practically relevant
examples.
Theory

Let us consider the stepwise enzyme–inhibitor binding
mechanism shown in Scheme 1. The inhibitor I is assumed
to compete with the substrate S for binding to the free
enzyme E. We further assume that the inhibitor is bound
only weakly (no tight binding [3]), such that the total or
analytic concentration ½I �0 is always equal to the free inhib-
itor concentration ½I �. We make the same assumption about
substrate concentrations (negligibly small substrate deple-
tion throughout the experiment; ½S�0 ¼ ½S�). Crucially
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Scheme 1.
important, we do not assume that the inhibitor binding
and dissociation steps are at rapid equilibrium. Relaxing
the rapid-equilibrium requirement is the principal differ-
ence between the theoretical treatment presented in this
paper and the other previously published reports on
slow-binding inhibitor kinetics (for review, see [1]).

Under the assumptions described above, changes in the
product concentration ½P � over time are described by a
sum of two exponential terms plus one linear term, as shown
in Eq. (1). The concentrations of enzyme–substrate com-
plexes E:I and E:J evolve according to Eqs. (2), and (3),
respectively. Various auxiliary expressions (v0, k, a, etc.)
are defined in Eq. (4) through (15). The derivation of Eqs.
(1) through (3)—the main theoretical result presented in this
report—was performed by using the method of Laplace
transforms [4]; the details are shown in the Appendix.
½P � ¼ v0c 1þ b� a
2a

e�ðk�aÞt � bþ a
2a

e�ðkþaÞt
� �

þ vst: ð1Þ

½E:I � ¼ ½E:I �1 1þ d� a
2a

e�ðk�aÞt � dþ a
2a

e�ðkþaÞt
� �

: ð2Þ

½E:J � ¼ ½E:J �1 1� k þ a
2a

e�ðk�aÞt þ k � a
2a

e�ðkþaÞt
� �

: ð3Þ

v0 ¼ ½E�0ks3

½S�0
½S�0 þ Km

; Km ¼ ðks2 þ ks3Þ=ks1: ð4Þ

vs ¼
v0

1þ ð1þ 1=K43Þ½I �0=K 021

: ð5Þ

½E:I �1 ¼
½E�0

1þ 1=K43 þ K 021=½I �0
: ð6Þ

½E:J �1 ¼
½E�0

1þ ð1þ K 021=½I �0ÞK43

: ð7Þ

K 021 ¼ k2=k01: ð8Þ
K43 ¼ k4=k3: ð9Þ
k01 ¼ k1=ð1þ ½S�0=KmÞ: ð10Þ
k ¼ ð½I �0k01 þ k2 þ k3 þ k4Þ=2: ð11Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2k4 � ½I �0k01ðk3 þ k4Þ

q
: ð12Þ

b ¼ k � 2k þ k3 þ k4 þ ðk3 þ k4Þ3=k2k3

1þ ðk3 þ k4Þ2=k2k3

: ð13Þ

c ¼ K 021

½I �0
� 1=k3 þ ð1þ K43Þ2=k2

½1þ ð1þ K 021=½I �0ÞK43�2
: ð14Þ

d ¼ k � k4 � k3 þ ½I �0k01=K43: ð15Þ
It is interesting to note several practically relevant proper-
ties of the above mathematical model for stepwise slow-bind-
ing inhibition. The reaction rate v0 Eq. (4) is the uninhibited
rate, i.e., the reaction rate that would be observed in the
absence of inhibitor. The steady state rate vs Eq. (5) is the
asymptotic reaction rate that would be observed after all
enzyme–inhibitor binding transients have subsided. The
expression v0c in Eq. (1) represents a displacement on the



Fig. 1. Simulation of pre-steady state evolution of enzyme species in the
reaction mechanism shown in Scheme 1, using Eqs. (2) and (3). The mole
fractions of enzyme forms were simulated using the following values of
model parameters: ks1 ¼ 1000 lM�1s�1; ks2 ¼ 2000 s�1; ks3 ¼ 1 s�1;
k1 ¼ 2:0 lM�1s�1; k2 ¼ 1:5 s�1; k3 ¼ 1:0 s�1; k4 ¼ 0:5, ½E�0 ¼ 0:001 lM;
½S�0 ¼ 1 lM; ½I�0 ¼ 1 lM.
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vertical (concentration) axis, where intersection occurs with
the asymptotic straight line — the tangent to the reaction
progress curve drawn at infinite reaction time.

The symbols ½E:I �1 Eq. (6) and ½E:J �1 Eq. (7) represent
the concentrations of the corresponding enzyme–inhibitor
complexes at equilibrium. The apparent bimolecular rate
constant k01 Eq. (10) for enzyme–inhibitor association is
smaller by a factor 1þ ½S�0=Km relative to the true associa-
tion rate constant, k1, because the inhibitor competes for
binding with the substrate. The dissociation equilibrium
constant K 021 ¼ k2=k01 is defined in terms of this apparent
association rate constant k01; the true dissociation equilib-
rium constant of the initially formed enzyme–inhibitor
complex, E:I , is K21 ¼ k2=k1. The isomerization equilibrium
constant K43 ¼ k4=k3 characterizes the extent to which the
initially formed enzyme–inhibitor complex would eventu-
ally rearrange, after equilibrium has been reached, into
the final complex E:J .

The symbols k, a, b, 1=c, and d formally are pseudo-first-
order rate constants, variously dependent on the total con-
centrations of reactants and on the seven elementary rate
constants appearing in the postulated reaction mechanism
(Scheme 1).

Results

Several experimentally relevant applications of the
newly derived theoretical model for slow-binding enzyme
inhibition are here described.

Heuristic simulations of pre-steady state kinetics

The kinetic model represented by Eq. (1) through (3) can
be used to visualize the pre-steady state progress of
enzyme–inhibitor binding. For example, Fig. 1 shows the
evolution of all enzyme species appearing in Scheme 1.
The graph was generated by assuming purposely that the
rate constants k2 (for the dissociation of the initially
formed enzyme–inhibitor complex) and k3 (for the isomer-
ization of the initially formed enzyme–inhibitor complex)
are comparable in magnitude. This assumption could not
have been made under currently published mathematical
models for slow binding inhibition, which always assume
that k2 � k3 (rapid equilibrium approximation).

From the graph in Fig. 1 we can gain valuable insight into
the qualitative features of the steady state binding model. For
example, let us consider the fact that the rate of product for-
mation in Scheme 1 is proportional to the concentration of
the enzyme–substrate complex, ½E:S�. In Fig. 1, we can clearly
see that the rate of product formation would gradually
decrease throughout the entire pre-steady state phase, start-
ing from t ¼ 1 ms and continuing to t ¼ 100 s This is distinct
from the conventional rapid-equilibrium approximation,
according to which the rate of product formation decreases
in two very distinct phases. In the first phase of the rapid-equi-
librium treatment, the enzyme and inhibitor bind virtually
instantaneously to form the complex E:I . Corresponding to
the extent of this instantaneous binding, we would observe
a decrease in ‘‘initial velocity” with inhibitor concentration.

In contrast, Fig. 1 clearly shows that, under the more
general steady state (as opposed to rapid-equilibrium)
approximation, there is no distinct initial binding phase
followed by subsequent isomerization of the initially
formed enzyme–inhibitor complex. Therefore, the notion
of initial velocity has a very different meaning in the for-
malism applied here, compared to that in the classical
rapid-equilibrium theory. In fact, Fig. 1 illustrates that
interpreting initial velocities in an actual experiment is
bound to be exceedingly difficult if and when the rate con-
stants k2 and k3 for a particular inhibitor are comparable in
magnitude. As the Fig. 1 shows, the principal difficulty is
that the reaction velocity changes continuously and
smoothly, from very early on in the experiment (on the
microsecond time scale).

Detecting deviations from the rapid-equilibrium model

Under the rapid-equilibrium approximation, it is
assumed that the concentration reaction product P appear-
ing in Scheme 1 increases according to Eq. (16) [1], where
kobs is the apparent first-order rate constant, V s is the final
steady state velocity, and V 0 is the initial reaction velocity.

½P � ¼ V 0 � V s

kobs

ð1� e�kobstÞ þ V st: ð16Þ

An important assumption underlying Eq. (16) is that the
rate constant k3 in Scheme 1 is negligibly small compared
to k2. The question then arises; what if this simplifying
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assumption (the rapid-equilibrium approximation) does
not hold? Would clear systematic deviation between the
experimental data and the presumed theoretical model be
detectable under realistic experimental conditions?

To answer this question, Eq. (1) was used to generate
artificial data, which were subsequently fit to Eq. (16).
The results are shown in Fig. 2. The residual plot in the
bottom panel of Fig. 2 is clearly nonrandom, which repre-
sents a systematic deviation between the presumed theoret-
ical model (based on the rapid-equilibrium approximation)
and the synthetic data (generated under the more general
steady state approximation).

The results of this numerical experiment demonstrate
that it is reasonable to expect an occasional failure of Eq.
(16) as the mathematical model for slow binding inhibition
data, even in the absence of inhibition depletion. If devia-
tions are in fact found in the analysis of real-world exper-
imental data and if the deviations are similar to those
shown in Fig. 2, it may suggest that the inhibitor dissocia-
tion step ðE:I ! E þ IÞ is not very much faster than isom-
erization of the initial complex ðE:I ! E:JÞ.
Discrimination between one-step and two-step mechanisms

The determination of kobs in Eq. (16) is an important
component of a conventional method of discriminating
Fig. 2. Least-squares fit to Eq. (16) of artificial data simulated according
to Eq. (1). The pseudoexperimental data were simulated using the
following values of model parameters: ks1 ¼ 1000 lM�1s�1;
ks2 ¼ 1000 s�1; ks3 ¼ 1 s�1; k1 ¼ 10 lM�1s�1; k2 ¼ 1 s�1; k3 ¼ 1 s�1;
k4 ¼ 0:1, ½E�0 ¼ 0:001 lM; ½S�0 ¼ 1 lM; ½I�0 ¼ 1 lM.
between the two-step mechanism in Scheme 1 and a sin-
gle-step counterpart mechanism, in which the intermediate
complex E:I is absent. Specifically, it has been recom-
mended to measure the dependence of kobs on the inhibitor
concentration ½I �0 and then determine whether the depen-
dence is linear, which would suggest the single-step mecha-
nism. In contrast, a nonlinear—more specifically,
hyperbolic—dependence of kobs on ½I �0 would suggest the
involvement of the two-step mechanism. For review of this
and other conventional methods of kinetic analysis used
for slow-binding inhibitors, see [1].

We have shown above that the single-exponential model
represented by Eq. (16) may not fit the experimental data if
the rate constants k2 and k3 in Mechanism B are similar in
magnitude. However, obvious systematic deviations simi-
lar to those shown in Fig. 2 may not always be detectable.
The question then arises: does Eq. (16), in fact allow
reliable discrimination between the one-step and the two-
step models according to the conventional data-analytic
protocol.

To answer this question, a family of progress curves
using Eq. (1) as the theoretical model was generated. Fol-
lowing the usual experimental design, each progress curve
was generated at a different total concentration of the
inhibitor, ½I �0. The synthetic progress curves were then fit
Fig. 3. Least-squares fit to Eq. (16) of artificial data simulated according
to Eq. (1). The pseudoexperimental data were simulated using the
following values of model parameters: ks1 ¼ 1000 lM�1s�1;
ks2 ¼ 1000 s�1; ks3 ¼ 1 s�1; k1 ¼ 10 lM�1s�1; k2 ¼ 2 s�1; k3 ¼ 2 s�1;
k4 ¼ 0:02, ½E�0 ¼ 0:001 lM; ½S�0 ¼ 1 lM; ½I �0 ¼ 0:05 lM (blue), 0.075
lM (red), 0.1 lM (purple), 0.125 lM (green), 0.15 lM (black). The
complete dataset additionally included two progress curves simulated at
½I�0 ¼ 0:175 lM and 0.2 lM.



Fig. 5. Variation in the initial rates, V 0 in Eq. (16), determined from
simulated data shown in Fig. 3; see legend to Fig. 3 for values of simulated
rate constants and concentrations. For a one-step mechanism,
E þ I�E:I, V 0 is not expected to change with ½I �0 (horizontal straight
line).
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to Eq. (16), and a plot of kobs against ½I �0 was constructed
in an attempt to detect any deviations from linearity.
Because this is a simulation experiment, we do know that
the stepwise binding mechanism in Scheme 1 is the ‘‘true”

model. Therefore, we do expect the plot of kobs against ½I �0
to be nonlinear. The results are summarized in Figs. 3–5.

Fig. 3 shows that the traditional kinetic model, Eq. (16),
does fit our simulated data exceedingly well. This is seen in
the random distribution of residuals (bottom panel). How-
ever, contrary to expectation based on the traditional
method of kinetic analysis, the plot of kobs against ½I �0
appears linear (Fig. 4) even though the underlying true
model is the two-step mechanism. From this we conclude
that, under the more general steady state approximation
used here, as opposed to the conventional rapid-equilib-
rium approximation, the concentration dependency of
kobs does not appear to be a reliable indicator of the
enzyme–inhibitor binding mechanism.

Importantly, the best-fit values of the initial reaction
rates (V 0 in Eq. (16)) do decrease with increasing total
inhibitor concentration (Fig. 5). This is in agreement
with the simulated (two-step) model. If the underlying
mechanism included only a single enzyme–inhibitor bind-
ing step, the initial rate V 0 in Eq. (16) is not expected to
vary with total inhibitor concentrations [1]. Thus, we
conclude that the dependency of V 0 on ½I �0 appears to
be a more reliable indicator of the binding mechanism
(a single step vs two steps) compared to the dependency
of kobs on ½I �0, which is frequently used for model
discrimination.
Fig. 4. Linear least-squares fit of apparent first-order rate constants,
kobs in Eq. (16), determined from simulated data shown in Fig. 3; see
legend to Fig. 3 for values of simulated rate constants and concentra-
tions. For a one-step mechanism, E þ I�E:I, the dependency is
expected to be linear.
Discussion

This paper was designed to answer the following ques-
tion. Assuming that enzyme–inhibitor binding follows the
two-step reaction mechanism shown in Scheme 1, and that
there are specific numerical values for all rate constants
that appear in this mechanism, what are the concentrations
of reactants (the substrate and the product) and intermedi-
ates (enzyme species) at any given time? The question arises
not only in heuristic simulations but also—more impor-
tantly—in the statistical analysis of real-world experimen-
tal data.

A fully general and most precise answer to the above
question can be obtained only by numerical integration
of a complete system of first-order ODEs, namely, Eqs.
(17)–(23) shown in the Appendix. This numerical integra-
tion requires a sophisticated computer algorithm, an
‘‘ODE solver” which typically uses thousands of arithmetic
operations merely to compute a single time point [5].

Although several specialized computer programs for this
purpose have been available to practicing enzymologists
[6,7], the requirement for a specialized software algorithm
is a serious drawback in many circumstances. Therefore,
we have set out to derive at least an approximate solution
to the kinetic problem by adopting a series of simplifying
assumptions. This allowed us to derive closed-form alge-
braic kinetic equations Eqs. (1)–(3). These equations can
now be used to simulate or fit experimental data without
relying on highly specialized ODE solver algorithms simply
by encoding them in any standard spreadsheet, a generic
data-fitting software program, or even a pocket calculator.
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One such approximate solution has already been
described in the literature, namely, Eq. (16) above, which
is based on three simplifying assumptions about the
enzyme system (for review, see [1]). First, Eq. (16) implies
that both the inhibitor and the substrate are present in very
large excess, relative to the total enzyme concentration,
through the entire experiment (no inhibitor or substrate
depletion). Second, Eq. (16) is based on the rapid-equilib-
rium approximation, implying that the dissociation of the
initially formed enzyme–inhibitor complex ðE:I ! E þ IÞ
is very much faster than the isomerization of this complex
into its more tightly bound form ðE:I ! E:JÞ. In other
words, the classic theoretical model assumes that the rate
constant k2 in Scheme 1 is very much larger than the rate
constant k3.

In this work the assumption that the total concentra-
tions of I and S are very high relative to the enzyme con-
centration was retained (otherwise no steady state
algebraic solution could be derived in principle), but any
restrictions on the relative values of kinetic constants
appearing in the reaction mechanism were removed. Specif-
ically, in contrast with the currently accepted mathematical
models for slow-binding inhibition, we no longer require
that the association and dissociation steps ðE þ I�E:IÞ
are many orders of magnitude faster than the isomerization
steps ðE:I�E:JÞ.

The removal of all restrictions on the relative values of
rate constants produced an algebraic model for slow-bind-
ing inhibition that is more complex than the classic rapid-
equilibrium rate equation. Specifically, instead of a single
exponential term appearing in the traditional Eq. (16), we
now have two distinct exponential terms appearing in Eq.
(1). The appearance of the reaction product over time gen-
erally follows a double exponential plus a linear term.

Using heuristic simulations, our steady state kinetic
model was used to investigate several aspects of slow-bind-
ing kinetics that have practical implications. For example,
we found that, if the rate constants for dissociation and
isomerization of E:I are similar in magnitude, the appear-
ance of product P over time in some cases — depending
on complex relationships between all four rate constants
appearing in the binding mechanism — shows detectable
deviation from the traditional kinetic model, Eq. (16).
The lesson learned is that if deviations similar to those in
Fig. 2 were found in analyzing real-world experiments, it
might suggest a relatively slow off-rate (a relatively low
value of k2) compared to isomerization ðk3Þ. In such cases,
Eq. (1) might be a better fitting model for the reaction pro-
gress than the traditional Eq. (16).

We also found that in certain other cases—again
depending on complex relationships between the particular
values of k1 through k4—the deviations from the single
exponential kinetic model Eq. (16) are not likely to be
detected, even though the rapid-equilibrium approximation
does not hold. This is illustrated in Fig. 3, simulated with
k2 ¼ k3 ¼ 2 s�1. However, the main lesson learned from
that particular simulation experiment is that the apparent
first-order rate constant kobs in Eq. (16) is not a good indi-
cator of the two-step vs one-step binding mechanism.

In particular, Fig. 4 shows that the dependence of kobs

on the total inhibitor concentration is essentially a straight
line suggesting nominally the one-step mechanism, accord-
ing to the classic kinetic analysis [1]. This result suggests
that to properly discriminate between the various mecha-
nistic models of slow binding enzyme inhibition, the simpli-
fied algebraic method of kinetic analysis might not be
suitable. It is likely that a more fruitful approach to the
slow-binding kinetics would be based on global analysis
[8] of several enzyme progress curves combined together
and treated as a single dataset, rather than (as is often
done) fitting each progress curve separately and subse-
quently reanalyzing derived kinetic constants, such as kobs

or V 0 appearing in Eq. (16). An optimized data analytic
protocol for slow-binding kinetic model discrimination is
currently being investigated in this laboratory.

One important limitation of our approach is retaining
the simplifying assumption that both substrate and inhibi-
tor must be in very large excess over enzyme. This will limit
the general utility of the algebraic model. As was correctly
pointed out by a reviewer, the algebraic model described
here is likely to be surpassed by the completely general
approach based on numerically solving systems of differen-
tial equations as implemented for example in the software
DYNAFIT [7]. However, an important advantage of the
simplified algebraic approach (where applicable) is that it
is computationally between one and two orders of magni-
tude faster. This allows us to perform important but very
time-consuming numerical experiments, such as Monte
Carlo simulations designed to study the intrinsic identifi-
ability of kinetic constants appearing in the two-step
slow-binding model.

In summary, we have presented a steady state mathe-
matical model for slow-binding enzyme inhibition kinetics,
assuming the validity of the two-step reaction mechanism
in Scheme 1. The only assumption inherent in the model
is that the total or analytic concentrations of substrate
and inhibitor are very much higher than the concentration
of the enzyme. Importantly, unlike mathematical models
previously published in the literature, our model does not
make any assumptions about the relative values of rate
constants. Thus, the model allows a more general approach
to heuristic simulations and to the statistical analysis of
experimental data. Our kinetic model is implemented as a
simple algebraic equation, which means that concentration
changes over time can be computed using even hand calcu-
lators a simple spreadsheet program, or one of many con-
ventional data analysis and visualization software
packages.
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Appendix. Derivation of kinetic equations

The reaction mechanism in Scheme 1 is described by the
complete set of differential equations

d½E�=dt ¼ �ks1½E�½S� þ ks2½E:S� � k1½E�½I � þ k2½E:I �; ð17Þ
d½S�=dt ¼ �ks1½E�½S� þ ks2½E:S�; ð18Þ
d½E:S�=dt ¼ ks1½E�½S� � ðks2 þ ks3Þ½E:S�; ð19Þ
d½P �=dt ¼ ks3½E:S�; ð20Þ
d½I �=dt ¼ �k1½E�½I � þ k2½E:I �; ð21Þ
d½E:I �=dt ¼ k1½E�½I � � ðk2 þ k3Þ½E:I � þ k4½E:J �; and ð22Þ
d½E:J �=dt ¼ k3½E:I � � k4½E:J �: ð23Þ

Assuming no substrate or inhibitor depletion (½I � ¼ ½I �0,
½S� ¼ ½S�0), we can eliminate differential equations for ½I �
and ½S�:

d½E�=dt ¼ �ks1½E�½S�0 þ ks2½E:S� � k1½E�½I �0 þ k2½E:I �;
d½E:S�=dt ¼ ks1½E�½S�0 � ðks2 þ ks3Þ½E:S�;
d½P �=dt ¼ ks3½E:S�;
d½E:I �=dt ¼ k1½E�½I �0 � ðk2 þ k3Þ½E:I � þ k4½E:J �; and

d½E:J �=dt ¼ k3½E:I � � k4½E:J �:

We now invoke the steady state approximation for the
substrate portion of the mechanism. Thus,

Km ¼ ðks2 þ ks3Þ=ks1;

½E:S�
½E� þ ½E:S� ¼

½S�0=Km

1þ ½S�0=Km
;

½E:S� ¼ ð½E� þ ½E:S�Þ 1

1þ Km=½S�0
; and

½E� ¼ ð½E� þ ½E:S�Þ 1

1þ ½S�0=Km
:

Utilizing the mass balance equation for the enzyme, we ob-
tain for the steady state concentrations ½E� and ½E:S�

½E�0 ¼ ½E� þ ½E:S� þ ½E:I � þ ½E:J �;
½E� þ ½E:S� ¼ ½E�0 � ½E:I � � ½E:J �;

½E:S� ¼ ð½E�0 � ½E:I � � ½E:J �Þ
1

1þ Km=½S�0
; and

½E� ¼ ð½E�0 � ½E:I � � ½E:J �Þ
1

1þ ½S�0=Km
:

This leads to the reduced system of three simultaneous
differential equations for three unknowns:

d½P �=dt ¼ ð½E�0 � ½E:I � � ½E:J �Þ
ks3

1þ Km=½S�0
;

d½E:I �=dt ¼ ð½E�0 � ½E:I � � ½E:J �Þ
k1

1þ ½S�0=Km
½I �0

� ðk2 þ k3Þ½E:I � þ k4½E:J �; and

d½E:J �=dt ¼ k3½E:I � � k4½E:J �:

For notational simplicity we can define the apparent
first-order rate constants k0 and k01 as
k0 �
ks3

1þ Km=½S�0
and

k01 �
k1

1þ ½S�0=Km
:

The final system of differential equations to be solved is

d½P �=dt ¼ k0ð½E�0 � ½E:I � � ½E:J �Þ;
d½E:I �=dt ¼ k01½I �0½E�0 � ðk

0
1½I �0 þ k2 þ k3Þ½E:I �

þ ðk4 � k01½I �0Þ½E:J �; and

d½E:J �=dt ¼ k3½E:I � � k4½E:J �:

Setting the initial conditions ½P �t¼0 ¼ ½E:I �t¼0 ¼
½E:J �t¼0 ¼ 0, we can now apply the method of Laplace
transforms to obtain the integral equation for the concen-
tration of the reaction product ½P � and the concentrations
of the enzyme–inhibitor complexes:

½P � ¼ v0c 1þ b
a

e�kt sinhðatÞ � e�kt coshðatÞ
� �

þ vst;

½E:I � ¼ ½EI �1 1þ d
a

e�kt sinhðatÞ � e�kt coshðatÞ
� �

; and

½E:I � ¼ ½EJ �1 1� k
a

e�kt sinhðatÞ � e�kt coshðatÞ
� �

:

All auxiliary variables (a, b, k, etc.) are defined in the
text under Theory.

The hyperbolic sine and cosine functions in the expres-
sions above are not useful for practical computations,
because even a relatively small numeric argument for
sinhðxÞ and coshðxÞ leads to numerical overflow. We found
this to be true even for relatively small reaction times. There-
fore, the integral equations above were algebraically rear-
ranged by taking into account the definitions
sinh x ¼ ðex � e�xÞ=2 and cosh x ¼ ðex þ e�xÞ=2. Grouping
all exponential terms, we obtained the final kinetic equations
(1)–(3). A similar derivation has been presented by Sculley
et al. [9].

SigmaPlot simulation script

The following code represents a simulation ‘‘transform,”
or script, which was used to compute the changes in prod-
uct concentration over time in the commercial data analy-
sis software package SigmaPlot (Systat Software Inc., San
Jose, California). Similar code can be created for many
other commercial software packages commonly used for
biochemical data analysis.

;—————————————————————-
; Generate 100 time points from zero to 10

seconds:

t = data(0,10,0.1)

; Rate constants appearing in the two-step

mechanism

; Units: uM, sec
ks1 = 1000

ks2 = 2000
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ks3 = 1

k1 = 10

k2 = 1

k3 = 1

k4 = 0.1

; Total concentrations

; Units: uM
Eo = 0.001

So = 1

Io = 1

; The model (product concentration over

time):

Km = (ks2+ks3)/ks1

k1p = k1/(1+So/Km)

K21 = k2/k1p

K43 = k4/k3

v0 = Eo*ks3*(So/Km)/(1+So/Km)

vs = v0/(1+(1+1/K43)*(Io/K21))

k = (Io*k1p+k2+k3+k4)/2

alpha = sqrt(k*k-Io*k1p*(k3+k4)-k2*k4)

beta = k-(2*k+k3+k4+(k4+k3)^3/(k2*k3))/
(1+(k4+k3)^2/(k2*k3))
gamma = (K21/Io)*(1/k3+(1+K43)^2/k2)/
(1+(1+K21/Io)*K43)^2
exp1 = exp(-(k-alpha)*t)*(beta-alpha)/

(2*alpha)

exp2 = -exp(-(k+alpha)*t)*(beta+alpha)/

(2*alpha)

P = v0*gamma*(1+exp1+exp2)+vs*t
; Put the simulated data (time vs. concen-

tration) in the first

; two columns in the SigmaPlot spreadsheet

file:

put t into col(1)

put P into col(2)

;—————————————————————-
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