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Abstract

A novel rate equation to characterize the dose-response behavior of a moderately potent (‘‘classical’’) enzyme inhibitor con-

taminated with a very potent (‘‘tight-binding’’) impurity is derived. Mathematical properties of the new rate equation show that, for

such contaminated materials, experimentally observed I50 values are ambiguous. The four-parameter logistic equation, conven-
tionally used to determine I50 values, cannot be used to detect the presence of tight-binding impurities in inhibitor samples. In
contrast, fitting the newly derived rate equation to inhibitor dose- response curves can, in favorable cases, reveal whether the un-

known material is chemically homogeneous or whether it is contaminated with a tight-binding impurity. The limitations of our

method with respect to the detectable range of inhibition constants (both classical and tight-binding) were examined by using

Monte-Carlo simulations. To test the new analytical procedure experimentally, we added a small amount (0.02 mole%) of a tight-

binding impurity (Ki ¼ 0:065 nM) to an otherwise weak inhibitor of human mast-cell tryptase (Ki ¼ 50:4lM). The resulting material
was treated as ‘‘unknown.’’ Our kinetic equation predicts that such adulterated material should show I50 ¼ 0:40lM, which was
identical to the experimentally observed value. The best-fit value of the apparent inhibition constants for the tight-binding inhibitor

was Ki ¼ ð0:107� 0:035ÞnM, close to the true value of 0.065 nM.
� 2003 Elsevier Science (USA). All rights reserved.
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Classical enzyme inhibitors are characterized by ap-

parent inhibition constants ðKiÞ that are very much larger
than the enzyme concentration ð½E�0Þ in a given assay. In
contrast, tight-binding inhibitors are characterized by Ki

values comparable in magnitude with ½E�0 or even much
smaller ðKi << ½E�0Þ. In this paper, we propose a new
method of analyzing initial velocity data obtained with

mixtures of classical and tight-binding inhibitors.

Our research has been motivated by anecdotal evi-

dence that occasionally enzyme inhibitor samples en-

countered in screening for drug discovery are not

chemically pure. For example, using analytical methods

recently described in this journal [1,2], we have deter-

mined Ki values for hundreds of thousands of inhibitors.
However, for certain inhibitors we found that the dose-

response behavior deviated from the expected theoreti-
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cal model. The question of whether this anomalous ki-

netic behavior could be explained by the presence of

tight-binding impurities in inhibitors that are weakly

potent, or even completely inactive arose.

To address this problem, we derived a rate equation

that describes the dose-response kinetics of inhibitor
mixtures consisting of one tight-binding inhibitor and

one classical inhibitor. The mathematical properties of

our equation show that the experimentally observed I50
values are ambiguous. Each observed value of I50 can
arise in principle by infinitely many combinations of the

classical inhibition constant, the tight-binding inhibition

constant, and the molar fraction of tight-binding im-

purity. This is in contrast with chemically pure samples,
for which Cha�s equation [3] or the Cheng–Prusoff
equation [4] give an unambiguous relationship between

Ki and I50.
The predictive power of the new rate equation was

established in a series of Monte-Carlo simulations, using

more than a million synthetic data sets that were similar
reserved.
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in experimental design to those typically generated in the
laboratory. We found that, under certain conditions, it

is indeed possible to diagnose the presence of a tight-

binding impurity in an otherwise moderately active or

inactive sample. In most cases, the inhibition constant of

the tight-binding contaminant could be determined re-

liably, but the ‘‘classical’’ inhibition constant of the

weakly potent major component could not.

To verify our new kinetic method experimentally, we
created an artificially impure inhibitor sample. A weakly

potent inhibitor of human mast-cell tryptase (benzami-

dine, Ki ¼ 50lM) was doped with a very small amount
(0.02%) of the tight-binding inhibitor CRA-001390

(Ki ¼ 0:065 nM) [1]. The resulting ‘‘unknown’’ inhibitor
had I50 ¼ 0:4lM, exactly as predicted by our theoretical
model.

The nonlinear least-squares fit to the commonly used
four-parameter logistic equation gave no indication that

the sample was not chemically homogeneous. In contrast,

fitting the same experimental data to the mechanism-

basedMorrison equation [5,6] clearly revealed systematic

discrepancies, suggesting the presence of a tight-binding

impurity. Using our newly derived kinetic equation as

the fitting model, we obtained a very satisfactory fit. The

best-fit values were Ki ¼ ð0:107� 0:035Þ nM for the
tight-binding inhibition constant and (0.09� 0.02)% for
the molar fraction of the tight-binding impurity. The

apparent inhibition constant for benzamidine could not

be determined.

Our new method of kinetic analysis should be of in-

terest in all biochemical laboratories where large num-

bers of enzyme inhibitors are evaluated with the goal of

extracting apparent inhibition constants or I50 values
from dose-response curves. Many such laboratories are

involved in secondary screening of enzyme inhibitors as

potential therapeutics.
0

Methods

Materials

Tos-Gly-Pro-Lys-pNA (Sigma, St. Louis, MO) and

benzamidine (Sigma-Aldrich, Milwaukee, WI) were

purchased from the indicated commercial sources.

Mast-cell tryptase was purified from the immortalized

human mast-cell line, HMC-1, as previously reported

[7]. CRA-001390 was synthesized at Celera Genomics

(formerly Axys Pharmaceuticals compound APC-1390)
as described [8].

Experimental

Kinetic measurements were performed in a total re-

action volume of 100 lL in 96-well U-bottomed mi-
crotiter plates (Falcon). Measurements of substrate
hydrolysis were made using a SpectraMax 250 kinetic
plate reader (Molecular Devices, Sunnyvale, CA).

Tryptase (50 pM active site) was combined with inhib-

itor at varying concentrations in a buffer containing

50mM Tris (pH 8.2), 150mM NaCl, 0.05% Tween 20,

10% dimethyl sulphoxide and 50 lg/ml heparin for 1 h at
room temperature. Control reactions in the absence of

inhibitor were performed in replicates of eight. Reac-

tions were initiated by the addition of substrate (0.5mM
Tos-Gly-Pro-Lys-pNA) and the rate of substrate hy-

drolysis was measured by monitoring the change in

absorbance at 405 nm over 10 min. Initial velocities were

determined by linear regression of progress curves.
Computational

I50 values were determined by nonlinear regression of
percentage inhibition data by using the four-parameter

logistic equation (1), where p (‘‘percentage inhibition’’)

is the relative decrease in enzyme activity due to the

inhibitor concentration ½I �0. The regression analysis was
performed by the commercial software packages Prism

(GraphPad) and SigmaPlot (SPSS)

p ¼ pmin þ
pmax � pmin
1þ ð½I �0=I50Þ

n : ð1Þ

Initial velocity data were analyzed by nonlinear re-

gression using a modification of the Marquardt algo-

rithm [9]. The following equations have been employed
as theoretical models. Eq. (2) applies to a pure tight-

binding or classical inhibitor. Eq. (3) applies to a single

tight-binding or classical inhibitor present as an impurity

(molar fraction aÞ in a completely inactive bulk material

v ¼ v0
½E�0 � ½I �0 � KT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½E�0 � ½I �0 � KT Þ2 þ 4½E�0KT

q

2½E�0
;

ð2Þ

v¼ v0
½E�0� a½I �0�KT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½E�0� a½I �0�KT Þ2þ 4½E�0KT

q

2½E�0
:

ð3Þ
The kinetics of a tight-binding inhibitor (apparent

inhibition constant KT , molar fraction aÞ mixed with a
classical inhibitor (apparent inhibition constant KCÞ is
described by Eq. (4), where the auxiliary variable b is
defined by Eq. (5). We have derived Eq. (4) by using the

algebraic method of Segel [10, p. 22] based on the rapid-

equilibrium approximation

v¼ v0
½E�0�a½I�0�bKT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½E�0�a½I �0�bKT Þ2þ4½E�0bKT

q

2b½E�0
;

ð4Þ

b ¼ 1þ ð1� aÞ½I � =KC: ð5Þ
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The dependence of I50 on inhibition constants for a
mixture of a classical and a tight-binding inhibitor is

described by Eq. (6). When the molar fraction of the

tight-binding inhibitor is set to unity ða ¼ 1, represent-
ing a pure tight-binding inhibitor), Eq. (6) turns into Eq.

(7) according to Cha [3]. On the other hand, when a is
set to zero (representing a pure classical inhibitor), we

obtain the Cheng–Prusoff equation, I50 ¼ KC, as a spe-

cial case for classical inhibitors [4]

I50 ¼
½E�0=2þ KT

½E�0=2þ KT

� �
ð1� aÞ=KC þ a

; ð6Þ

I50 ¼ ½E�0=2þ KT : ð7Þ
Under special circumstances, both apparent inhibi-

tion constants KC and KT and the enzyme concentration

½E�0 are known, and the task is to compute the molar
fraction of tight-binding impurity from the observed

value of I50, using Eq. (8)

a ¼ KC=I50 þ 1
KC=ð½E�0=2þ KT Þ � 1

: ð8Þ
Results

I50 for inhibitor mixtures

For chemically homogeneous classical inhibitors,

I50 is identical to KC by definition (Cheng–Prusoff

equation [4]). For homogeneous tight-binding inhibi-
tors, the plot of I50 vs. KT also is a straight line with

unit slope, but this time with nonzero intercept equal

to ½E�0/2 (Cha�s equation (7), [3]). In contrast, the I50
for inhibitor mixtures depends on the apparent inhi-

bition constants as a rectangular hyperbola, defined by

Eq. (6).

It is obvious from Eq. (6) that any given value of I50
can be produced by infinitely many combinations of KT ,
KC, and a. This result suggests that any statistical
method of analyzing dose-response curves that is based

merely on determining I50 values (for example, fitting
dose-response curves to the four-parameter logistic

equation Eq. (1)) will produce ambiguous results. In

contrast, nonlinear regression of dose-response data

using the mechanism-based equation (4) offers at least

the possibility of distinguishing between chemically ho-
mogeneous and heterogeneous samples.

A major concern is that Eq. (4) contains four ad-

justable parameters ðKC, KT , a, and v0Þ. This large
number of adjustable parameters can cause a large de-

gree of mutual dependency (coupling or correlation)

among adjustable parameters. An extremely high degree

of correlation among parameters could prohibit the

accurate determination of all parameter values from
real-world experimental data. A standard approach to
investigating the possibility of such parameter correla-
tion is to apply Monte-Carlo simulation techniques.

Monte-Carlo simulations

A tight-binding impurity in an inhibitor preparation

can be detected kinetically if andwhen the parametersKC,

KT , and a can be determined simultaneously from dose-
response data. To ascertain which (if any) combinations
of KC, KT , and a can be so determined, we chose a typical
experimental design and a typical measurement error

(e.g., 2 or 3%) for a series of Monte-Carlo simulations.

The experimental design included nine inhibitor concen-

trations, starting from the maximum ½I �0 ¼ 1:0lM, seven
twofold serial dilutions (0.5, 0.25, 0.125...lM), and the
negative control ð½I �0 ¼ 0Þ.
Using this layout, we employed Eq. (4) to simulate

10,000 dose-response curves for each particular combi-

nation of KC, KT , and a. ‘‘Experimental’’ data sets were
generated by taking the theoretical data set and super-

imposing on it normally distributed pseudo-random

noise with standard deviation equal to 1, 2, or 3% of the

simulated velocity. Eq. (4) was then fit to the synthetic

data sets to obtain least-squares values of adjustable

parameters KC, KT , and a. The purpose of this analysis is
to compare these best-fit parameters with their simu-

lated ‘‘true’’ values.

A representative example is shown in Fig. 1. The

dashed curve represents a theoretical dose-response

curve simulated with ½E�0 ¼ 1:0 nM, KC ¼ 0:1lM,
KT ¼ 0:1 nM, and a ¼ 1:0%. The data points (open cir-
cles) were generated by superimposing pseudo-random

error with standard deviation equal to 3% of the simu-
lated velocity. The least-squares fit of the simulated data

(solid curve) yielded KC ¼ 0:065lM, KT ¼ 0:041 nM,
and a ¼ 0:6%. Clearly, the 3% pseudo-random noise
significantly distorted the values of the fitting parame-

ters. In some simulations the best-fit values of model

parameters KC, KT , and a were much closer to their true
values, but in other simulations the best-fit values were

even more distorted.
A summary of 30,000 representative regression

analyses for three different combinations of KC, KT , and

a (10,000 data sets for each combination) is shown in
Fig. 2. Figs. 2A and B use the same values of model

parameters (KC ¼ 0:1lM, KT ¼ 0:1 nM, and a ¼ 1:0%),
only the simulated experimental error was different. A

slight increase in experimental error, from 1% in Fig. 2A

to 2% in Fig. 2B, causes a significant increase in the
uncertainty of the inhibition constants KC and KT . This

is illustrated by the widening of the histograms. Addi-

tionally, in many of the Monte-Carlo simulations the

classical inhibition constant KC could not be determined

at all. The solid black rectangles represent all regression

analyses where the best-fit value of KC was several

orders of magnitude larger than the simulated value,



Fig. 1. A typical simulation/regression sequence from a Monte-Carlo

study of Eq. (4), using ½E�0 ¼ 1:0 nM. Synthetic data points were
generated at ½I �0 ¼ 1, 0.5, 0.25; . . . ;0.0078125, and 0 nM. Pseudo-ran-
dom error with standard deviation of 3% relative to the generated

value was superimposed on the ideal data, and the resulting data set

was fit to Eq. (4). Ten thousand such simulation/regression runs were

performed for each combination of inhibition constants KT ; KC , and

the molar fraction of tight-binding impurity, a.
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corresponding to effectively no inhibition. In these cases

the 99% bulk material behaved as completely inactive,

and only the tight-binding constant KT could be deter-

mined at all. These results suggest that the measure-

ments of initial velocities must be very accurate
(experimental error approximately 1%) to determine the

tight-binding inhibition constants for impurities.

The relative magnitude of classical versus tight-

binding inhibition constants had even greater effect on

the possibility of determining simultaneously the values

of KC, KT , and a in Monte-Carlo simulations. This is
illustrated in Fig. 2C, where both KC and KT have 10

times greater values compared to those in Fig. 2A. The
uncertainties of both KC and KT in Fig. 2C

ðKC ¼ 1000	 ½E�0; KT ¼ ½E�0Þ are much larger than
those in Fig. 2A ðKC ¼ 100	 ½E�0; KT ¼ ½E�0=10Þ. These
results suggest that simultaneous determination of both

apparent inhibition constants ðKC and KT Þ will be pos-
sible only in a restricted range of their values.

To investigate this range, we have performed 1302

Monte-Carlo simulations, each with 10,000 dose-
response data sets. The apparent inhibition constant KC

had 21 different values and the apparent inhibition

constant KT had 62 different values ð21	 62 ¼ 1302Þ.
KC was varied from 0.1 to 8.6736 lM, stepping loga-
rithmically by a factor of 1.25, whereas KT was varied

from 0.001 to 815.66 nM, again stepping logarithmically
by the same factor. For each of the 1302 combinations
of inhibition constant values (assuming ½E�0 ¼ 1:0 nM
and standard error of measurement 1%) we assessed the

spread of best-fit values, as illustrated for three such

Monte-Carlo runs in Fig. 2. The conclusions can be

summarized as follows.

The classical inhibition constant KC could be deter-

mined from dose-response curves only if two conditions

were met simultaneously: (i) the true value of KC was
lower than approximately 500	 ½E�0 and (ii) the true
value of KT was lower than approximately 0:5	 ½E�0.
Outside of this range, the best-fit values of KC were

many orders of magnitude larger than the true values,

suggesting that the classical inhibitor had virtually zero

activity. Thus, for most combinations of KC and KT , the

inhibitor sample behaved as though it were composed of

a completely inactive (ballast) material contaminated
with a tight-binding impurity. In other words, for most

combinations of KC and KT , Eq. (3) was the most suit-

able fitting model.

On the other hand, the tight-binding inhibition con-

stant KT (and the molar fraction of impurity aÞ could be
reliably determined regardless of the true value of KC,

but only if KT was in the range between 0:005	 ½E�0 and
0:5	 ½E�0. These results suggest that the detection of a
tight-binding impurity in an inhibitor sample will be

most reliable when the enzyme concentration is at least

comparable in magnitude with KT or higher ð½E�0PKT Þ.
However, extremely high enzyme concentrations relative

to KT ð½E�0 > 200	 KT ) again are not useful.

Experimental example

To test our method based on Eq. (4), we have con-

taminated a weak mast-cell tryptase inhibitor with a

tight-binding impurity. Benzamidine (KC ¼ 50:4lM)
was doped with a tryptase inhibitor CRA-001390

(KT ¼ 0:065 nM, [1]) at the molar ratio 5000:1 (0.02%
impurity). For both pure and contaminated benzami-

dine, initial reaction velocities were measured at eight

different inhibitor concentrations, plus negative control
ð½I �0 ¼ 0Þ. The enzyme concentration was 0.05 nM. Us-
ing Eq. (6), we can predict the I50 for this mixture of
inhibitors to be approximately 0.4 lM.
The initial velocities were analyzed by two different

methods. The first method consisted of nonlinear re-

gression using the conventional four-parameter logistic

equation (1). The results are summarized graphically in

Fig. 3. The best least-squares fit values of I50 were
(50.4� 3.3) lM for pure benzamidine and (0.40� 0.05)
lM for benzamidine contaminated with CRA-001390.
Dose-response curves for both pure benzamidine and

contaminated benzamidine fit to Eq. (1) very well, as is

seen from the fact that the experimental data points

(open circles in Fig. 3) deviate very little from the best-fit

curves. Thus, the results of fit to Eq. (1) do not indicate



Fig. 2. Summary of three typical Monte-Carlo simulations, all conducted at ½E�0 ¼ 1:0 nM and with the molar fraction of impurity a ¼ 1%. (A)
Simulated values were KC ¼ 0:1lM, KT ¼ 0:1 nM, with the pseudo-random error 1%. (B) Same as A, except for pseudo-random error 2%. (C)
Simulated values KC ¼ 1:0lM, KT ¼ 1:0 nM, with the pseudo-random error 1%. For explanation see text. In total, 1302 such Monte-Carlo simu-
lations were performed at 1302 different combinations of KT ; KC and a (approximately 1.3 million synthetic data sets).
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in any way that the dose-response curve B in Fig. 3 is

generated by a chemically heterogeneous material.

The second method of statistical analysis consisted of

nonlinear regression of the same initial velocity data

using (in turn) Eqs. (2)–(4), instead of the four-param-

eter logistic equation (1). The results are graphically

summarized in Fig. 4.

Least-squares fit of dose-response data for contami-
nated benzamidine to Eq. (2), describing a chemically

homogeneous tight-binding or classical inhibitor, is
represented by the dashed curve in Fig. 4. It is important

to note a pronounced lack of fit. Indeed, within the

experimental errors represented by the error bars shown

in Fig. 4, only two of nine experimental data points

overlap with the best-fit curve.

Least-squares fit of the same data to Eq. (4), de-

scribing a chemically heterogeneous mixture of a clas-

sical inhibitor contaminated by a tight-binding impurity,
is represented by solid curve in Fig. 4. The best-fit values

and formal standard errors of adjustable parameters



Fig. 4. Nonlinear least-squares fit of inhibition data for human mast-

cell tryptase ð½E�0 ¼ 0:05 nM). The inhibitor was benzamidine doped
with the tight-binding inhibitor CRA-001390. Curve A is the best-

least-squares fit to Eq. (2) for a pure tight-binding or classical inhibitor.

Note the pronounced lack of fit (dashed curve misses most of the data

points). Curve B is the best least squares fit to Eq. (4) for a mixture of a

classical inhibitor contaminated with a tight-binding inhibitor. The

best-fit values were molar fraction a ¼ ð0:09� 0:02Þ%, apparent inhi-
bition constant KT ¼ ð107� 35Þ pM. The actual values for inhibitor
CRA-001390 were a ¼ 0:02%, KT ¼ 65 pM [1].

Fig. 3. Dose-response curves for the inhibition of human mast-cell

tryptase by (A) pure benzamidine ðKC ¼ I50 ¼ 50lM) or (B) benz-
amidine doped with 0.02% of the tight-binding inhibitor CRA-001390

ðKT ¼ 0:065nM). Data points are averages from triplicate measure-
ments of initial velocities. Percentage inhibition values (p) were fit to

the four-parameter logistic Eq. (1) to obtain I50 values. Eq. (6) predicts
for ‘‘adulterated’’ benzamidine I50 ¼ 0:40lM.
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were v0 ¼ ð7:90� 0:31Þ a.u./min, a ¼ ð0:087� 0:015Þ%,
KC ¼ ð1:9� 49:8Þ M, and KT ¼ ð0:107� 0:035Þ nM.
The best-fit value of the apparent inhibition constant for

benzamidine is not only extremely large (38,000 times

larger than the true value KC ¼ 50lM), but also is ac-
companied by a large formal standard error. These re-

sults mean that the inhibition constant for benzamidine

cannot be determined at all from the available data

and that the sample behaves effectively as a completely
inactive material containing a small amount of a tight-

binding impurity. Accordingly, we repeated the regres-

sion analysis using Eq. (3) instead of Eq. (4). The results

were identical for the relevant model parameters:

v0 ¼ ð7:90� 0:31Þ a.u./min, a ¼ ð0:087� 0:015Þ%, and
KT ¼ ð0:107� 0:035Þ nM. These results suggest that the
inhibitor is not chemically pure. The regression analysis

accurately diagnosed that the adulterated sample con-
tains less than 100 ppm of a tight-binding impurity with

Ki approximately 100 pM (true values a ¼ 20 ppm,
Ki ¼ 65 pM).
Discussion

We have recently described methods for kinetic
analysis that are suitable for fully automatic determi-

nation of inhibition constants and I50s [1,2]. The un-
derlying theoretical model for dose-response curves is

the Eq. (2) for ‘‘tight-binding’’ inhibition [5,6], which is

also applicable to weakly active or ‘‘loose-binding’’ in-

hibitors. These methods have been used successfully in

our laboratories to analyze hundreds of thousands of

inhibitor samples. However, occasionally we observe
that a certain dose-response curve does not fit Eq. (2)

very well.

There are many possible explanations for such devi-

ations between the experimental data and the given

theoretical model. In this paper, we focused on one ex-

planation that seems reasonable based on the complex

realities of drug research. Indeed, de novo enzyme in-

hibitors are often products of multistep chemical syn-
theses and purification methods whose efficiency is

necessarily finite. Such syntheses almost always yield

a preparation containing a single inhibitory species.

However, is it possible that an occasional anomaly in

dose-response behavior could be caused by the presence

of tight-binding impurities in otherwise weakly potent or

even entirely inactive material?

To answer this question, we applied two different
methods of analyzing inhibitor dose-response data.

The first method was traditional, based on the four-

parameter logistic equation. A systematic survey of

biochemical literature on the evaluation of enzyme in-

hibitors reveals that, year after year (e.g., [11–13]), I50
remains a favorite measure of inhibitory potency.

Similarly, the four-parameter logistic equation remains
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a favorite mathematical model for inhibitor dose-
response curves.

In this paper, we have demonstrated one potential

pitfall of this traditional approach. In particular, the

four-parameter logistic equation cannot discriminate

between a chemically homogeneous inhibitor (classical

or tight-binding) and a heterogeneous sample consisting

of bulk material that has (a) a moderate or no inhibitory

potency and (b) a highly potent impurity. Indeed both
experimental dose-response curves in Fig. 3 (curve A for

a chemically pure inhibitor and curve B for an inhibitor

mixture) fit the available data extremely well.

Because the fit to the four-parameter logistic Eq. (1)

is very good in both cases, there is no ‘‘red flag’’ that

would alert the investigator clearly to the presence of a

tight-binding impurity. Indeed, curve B in Fig. 3 appears

as just another half-micromolar inhibitor, instead of an
essentially inactive material containing a small amount

of compound with Ki ¼ 65 pM.
The only possible giveaway is the Hill slope pa-

rameter n in Eq. (1). For the contaminated benzami-

dine (curve B in Fig. 3) we obtained n ¼ ð1:53� 0:14Þ,
whereas for pure benzamidine (curve A) the slope pa-

rameter was n ¼ ð0:98� 0:07Þ. However, in practice
the Hill slope parameter was found not sufficiently
reliable to reveal conclusively the presence of tight-

binding impurities. Even for experimental data that are

affected by small measurement error (less than 1%), for

nearly optimally designed experiments and for kineti-

cally pure inhibitors, the Hill slope parameter varied

widely between 0.7 and 1.5 simply because of random

errors. This was especially true when both pmax and
pmin in Eq. (1) were treated as adjustable parameters.
Although these observations are merely anecdotal in

the scope of this report, a more detailed examination

of the Hill slope parameter n as an indicator of

anomalous inhibitor behavior will be presented else-

where.

A more successful approach to correctly diagnosing

the presence of tight-binding impurities in enzyme in-

hibitors is based on our newly derived rate Eq. (4),
used in conjunction with Eq. (2). Our approach is

easily amenable to automation in a high-throughput

setting. Such automated analysis of inhibitor dose-

response curves consists of three separate steps. In the

first step, the data are analyzed by using Eq. (2),

which assumes that the inhibitor preparation is

chemically pure. In the second step, the same data are

fit to Eq. (4), which assumes the presence of a tight-
binding impurity. In the third step, we apply a stan-

dard model-discrimination analysis based on the F

statistic [14].

According to our method of analysis, an inhibitor

sample is flagged as possibly containing a tight-binding

impurity if two conditions are satisfied simultaneously.

The first condition is that the traditional Eq. (2) gives a
poor fit based on the residual sum of squared deviations.
The second condition is that the calculated F statistic

suggests a statistically significant improvement in the

goodness of fit, going from the simple Eq. (2) to the

more complex Eq. (4). When both conditions are satis-

fied, the experimentally determined values of I50 and Ki

should not be trusted, and the sample should be care-

fully scrutinized for trace amounts of tight-binding im-

purities.
The approach described in this paper, as in any other

analytical methodology, has distinct limitations and

requirements. Our mathematical model does not take

into account the detailed mechanism of inhibition

(competitive vs. noncompetitive) and operates only on

apparent inhibition constants. Another restriction arises

from the assumed composition of the inhibitor mixture.

In the hypothetical case of two tight-binding inhibitors
present as a mixture, it would be necessary to solve a

cubic equation [15]. However, we have purposely re-

stricted ourselves to the less general case, where only

one inhibitor is tight-binding. Therefore, our theoretical

model arises more simply, as solution to a quadratic

equation.

A more important limitation of our analytical

method lies in the condition that the inhibition constants
of the impurity and the bulk material must be signifi-

cantly different from each other. Only then can both

inhibition constants be determined reliably at the same

time, as is illustrated by Monte-Carlo simulations. Our

experimental example illustrates the opposite scenario,

where simultaneous determination of KC and KT was not

possible. Furthermore, the impurity�s inhibition con-
stant must fall into a certain specific range (several or-
ders of magnitude wide) relative to the enzyme

concentration used in the assay. The model-discrimina-

tion method described here requires that the initial ve-

locities are measured very accurately and reproducibly

(less than 2% experimental error) and that the experi-

ment is nearly optimally designed with regard to the

inhibitor concentrations chosen. Finally, in fitting dose-

response data to Eq. (4), we assumed that the enzyme
concentration ½E�0 can be reasonably treated as a fixed
parameter. Our previous paper [2] describes in detail the

appropriate statistical treatment of those experimental

situations where the assumption of constant ½E�0 does
not hold.

We hope that other researchers active in the kinetic

analysis of enzyme inhibitors, especially those evaluat-

ing the inhibitory potency in the drug discovery process,
will find good use for our new analytical method and the

underlying mathematical model. In our experience,

abandoning the traditional exclusive reliance on I50—a
step taken in these laboratories several years ago—cer-

tainly did enhance the information content of a massive

data stream flowing from various inhibitor screening

projects.
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