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Active site titration by a reversible tight-binding in-
hibitor normally depends on prior knowledge of the
inhibition constant. Conversely, the determination of
tight-binding inhibition constants normally requires
prior knowledge of the active enzyme concentration.
Often, neither of these quantities is known with suffi-
cient accuracy. This paper describes experimental
conditions under which both the enzyme active site
concentration and the tight-binding inhibition con-
stant can be determined simultaneously from a single
dose-response curve. Representative experimental
data are shown for the inhibition of human kallikrein.
© 2000 Academic Press
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The concentration of enzyme active sites [E] 0 is usu-
ally determined in a titration experiment, using an
irreversible or a reversible tight-binding inhibitor with
a known apparent inhibition constant (1). Conversely,
tight-binding inhibition constants K i

app are usually de-
termined from initial velocity measurements using a
known concentration of the enzyme (2). Thus, the pre-
cise measurement of either quantity, [E] 0 or K i

app, de-
pends on the prior knowledge of the other.

In this paper we show under what conditions it is
possible to measure [E] 0 and K i

app simultaneously, from
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a single dose-response curve. We also describe an op-
timal method for the determination of tight-binding
inhibition constants in high-throughput, automated
measurements. The method consists of fitting certain
dose-response curves twice. In an initial least-squares
fit the presumed enzyme concentration is held con-
stant. If the apparent inhibition constant so deter-
mined falls into a certain range, the analysis is re-
peated while the enzyme concentration is treated as an
adjustable parameter.

The merits of the method are exemplified on a
series of Monte-Carlo simulations. We found that
under some conditions even a relatively small bias in
the presumed enzyme concentration (e.g., 50%)
causes a large error (e.g., more than an order of
magnitude) in the apparent inhibition constant. This
result shows the need for our two-stage regres-
sion method during automated high-throughput
analysis of pharmaceutically important tight-bind-
ing inhibitors.

As an example, we show a set of laboratory data for
the inhibition of human kallikrein. The raw data, and
a sample computer code to perform the calculations
proposed here, can be obtained electronically via the
Internet at the address given in footnote 1.

METHODS

Materials

Human plasma kallikrein (Athens Research and
Technology) and kallikrein substrate, H-Pro-Phe-Arg-
AMC (Bachem Bioscience) were purchased from the
indicated commercial sources. The compound RR-101,
a competitive reversible kallikrein inhibitor, was syn-

thesized at Axys Pharmaceuticals.
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Experimental

Inhibitor potency and enzyme activity measure-
ments were performed at room temperature using a
fluorescence microplate reader (Molecular Devices).
Plasma kallikrein (nominal concentration 4.0 nM) was
incubated with inhibitor RR-101 (final concentration 1,
2, 3, 4, 6, 8, 16, and 32 nM) in 50 mM Tris (pH 7.4), 150
mM NaCl, 0.05% Tween 20, 500 mM EDTA, and 10%
DMSO for 30 min. Control reactions in the absence of
inhibitor were performed in replicates of 8. The reac-
tions were initiated by the addition of substrate (350
mM H-Pro-Phe-Arg-AMC) and the rate of substrate
hydrolysis was measured by monitoring the increase in
fluorescence (excitation 355 nm, emission 460 nm) over
a 5-min period. The commercial vendor provided an
initial estimate of enzyme active site concentration; the
final enzyme titer and inhibition constants were deter-
mined by the methods described in this paper.

Computational: Monte-Carlo Simulations

Dose-response curves for tight-binding inhibitors
were simulated by using the Morrison equation [1],
where [E] 0 is the active enzyme concentration, K i

app is
he apparent inhibition constant, v 0 is the control ve-
ocity observed in the absence of inhibitors ([I] 0 5 0),
nd v is the initial reaction velocity observed at inhib-
tor concentration [I] 0.

v 5 v0

@E#0 2 @I#0 2 K i
app

1 Î~@E#0 2 @I#0 2 K i
app! 2 1 4@E#0K i

app

2@E#0
. [1]

Each simulated dose-response curve contained nine
points corresponding to the following inhibitor concen-
trations: 10.0, 2.50, 0.6250, 0.1563, 0.0391, 0.0099,
0.0010, and 0.0005 mM, and a data point simulated in
the absence of inhibitors ([I] 0 5 0). The reaction ve-
locity in the absence of inhibitor was arbitrarily set to
unity, v 0 5 1.0.

At each chosen value of K i
app or [E] 0, 10,000 data sets

were generated by superimposing normally distributed
pseudo-random noise, with constant variance and
standard deviation set to 5% of the maximum simu-
lated reaction velocity. Each set of simulated data was
subjected to nonlinear least-squares regression by us-
ing the Levenberg-Marquardt algorithm (3).

RESULTS

Propagation of Systematic Errors

In the first series of Monte-Carlo simulations, we

investigated how systematic errors in enzyme concen-
tration propagate into systematic errors in the appar-
ent inhibition constant. For each simulated value of
the inhibition constant, K i

(true), 200,000 artificial dose-
response curves were generated and subsequently sub-
jected to nonlinear least-squares fit.

All simulated dose-response curves contained nine
data points, representing initial velocities measured at
different inhibitor concentrations (see experimental
section for the corresponding values of [I] 0).

Each dose-response curve was generated by using a
fixed K i

(true) for the inhibition constant (for example, 0.1
nM) and the correct enzyme concentration [E] 0

(true). In a
subsequent least-squares fit of the same curve to Eq.
[1], the enzyme concentration was held constant at a
value that deviated from the correct concentration,
[E] 0

(nom) (for example, 1.0 nM instead of 0.9 nM). Be-
cause of this systematic error in enzyme concentration,
the fitted inhibition constant K i

(fit) was different from
the simulated inhibition constant K i

(true).
At each combination of [E] 0 and K i

app, 10,000 slightly
different dose-response curves were simulated and
subsequently fit to Eq. [1], yielding a spread of values
for the fitted inhibition constant. The distribution of
the K i

(fit) values was approximately Gaussian. There-
fore, it was possible to summarize the results of 10,000
simulations in the form of an average and a standard
deviation. One series of numerical experiments, ob-

FIG. 1. Propagation of systematic errors from the active enzyme
concentration into the apparent inhibition constant. Circles and
error bars represent averages and standard deviations, respectively,
for each set of 10,000 fitted values of K 0

(fit). The true value of the
inhibition constant was K i

(true) 5 0.01 nM. The nominal enzyme con-
centration ([E] 0

(nom) 5 1.0 nM in all cases) was held as a constant
arameter in the least-squares fit of dose-response curves to Eq. [1].
he true enzyme concentration [E] 0

(true) was varied from 0.1 to 2.0 nM.
ach dose-response curve contained nine data points, at inhibitor
oncentrations described in the experimental section.
tained for K i
(true) 5 0.1 nM, is summarized in Fig. 1.
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47TIGHT-BINDING INHIBITION CONSTANTS
Figure 1 represents 20 sets of simulations assuming
the true value K i

(true) 5 0.1 nM and the nominal enzyme
concentration [E] 0

(nom) 5 1.0 nM, which was held con-
stant in the least-squares fit. The true enzyme concen-
tration [E] 0

(true) was varied between 0.1 and 2.0 nM. The
results show that comparatively small systematic er-
rors in enzyme concentrations propagate into large
systematic errors in inhibition constants. For example,
if the true enzyme concentration were 0.5 nM instead
of the assumed 1.0 nM, the inhibition constant would
be underestimated on the average by a factor of 9 (K i

(fit)

5 0.012). Even a systematic error as small as 10% in
enzyme concentration ([E] 0

(true) 5 0.9 nM) leads to fitted
alues of inhibition constants that are underestimated
n the average by a factor of 2 to 3.
Even more prominent distortion in the fitted value of

i
app was seen in a similar series of experiments at

K i
(true) 5 0.01 nM, under otherwise identical conditions

([E] 0
(nom) 5 1.0 nM). In that series of Monte-Carlo sim-

ulations (data not shown), at some values of the true
enzyme concentration (e.g., at [E] 0

(true) 5 0.1 nM) a
significant number of the dose-response curves (ap-

FIG. 2. Uncertainty in the determination of K i
app from dose-

response data. Dose-response curves were simulated at [E] 0
(true) 5

.0 nM in all cases. For each panel a through d, 10,000 slightly
ifferent dose-response curves were simulated and subsequently
ubjected to least-squares fit to Eq. [1]. The nominal enzyme
oncentration was treated as an adjustable parameter. Note the
on-Gaussian character of the histogram in panel d; approxi-
ately 20% of all data sets in that series lead to the value of K i

(fit)

which was practically zero.
proximately 2000 of the 10,000 total data sets) could
H
F

not be fit to Eq. [1] at all. In those cases the best-fit
value K i

(true) was practically zero. This is illustrated also
in Fig. 2d below.

Simultaneous Determination of Ki
app and [E]0

In the second series of Monte-Carlo simulations, we
examined the conditions under which it is possible to
determine both the inhibition constant and the enzyme
active site concentration from a single dose-response
curve. This simultaneous determination is based on
fitting dose-response data to Eq. [1], while treating not
only K i

app and v 0 but also [E] 0 as adjustable parame-
ters.

The simulated dose-response curves again consisted
of nine data points (zero inhibitor concentration plus
eight data points at inhibitor concentrations described
in the experimental section). The simulated enzyme
concentration was always 1.0 nM, while the inhibition
constant was varied from 10 nM to 0.01 nM, stepping
by a factor of 10. At each value of the apparent inhibi-
tion constant, 10,000 slightly different dose-response

FIG. 3. Uncertainty in the determination of [E] 0 from dose-re-
ponse data. For each panel a through d, 10,000 slightly different
ose-response curves were simulated and subsequently subjected to
east-squares fit to Eq. [1]. The nominal enzyme concentration was
reated as an adjustable parameter. Note the non-Gaussian charac-
er of the histogram in panel a; most data sets in that series lead to
he value of [E] 0

(fit) which was practically zero, which means that the
nzyme concentration cannot be estimated under these conditions.

owever, the inhibition constant is estimated very reliably (see
ig. 2a).
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48 KUZMIČ ET AL.
curves were simulated. Each simulated curve was sub-
sequently fit to Eq. [1] and the best-fit values of K i

app

and [E] 0 were recorded. The spread of best-fit values of
K i

app is shown in Fig. 2, while the spread of best-fit
values of [E] 0 is shown in Fig. 3.

Figure 2 shows that the histogram of distribution for
he fitted values of K i

app is reasonably narrow only for
those values that are larger than 10% of the true en-
zyme concentration. On the other hand, Fig. 3 shows
that the enzyme concentration can be determined with
certainty only if the inhibition constant is, at most,
equal to the true enzyme concentration itself. Thus,
between K i

app . 0.1 3 [E] 0 and K i
app , 1.0 3 [E] 0, both

quantities can be determined simultaneously from the
same dose-response curve.

Sample Experimental Data

Human kallikrein was assayed at the nominal con-
centration [E] 0 5 4.00 nM, based on the nominal con-
centration of the enzyme stock. Protease inhibitor RR-
101 was used to inhibit the enzyme in 96-well plate
reader assays. The initial reaction velocities at differ-
ent inhibitor concentrations are shown as open circles
in Fig. 4.

The Morrison equation [1] was used to fit the exper-
imental data in two different ways. In the first round of
analysis, represented by the dashed curve in Fig. 4, the
concentration of the enzyme was held constant at its
nominal value [E] 0 5 4.00 nM. The best-fit value of the
pparent inhibition constant so obtained was 85 6 97

FIG. 4. Inhibition of human kallikrein. The initial velocities
(relative fluorescence units per second) were fit to Eq. [1]. Dashed
curve: enzyme concentration was kept constant at the nominal
value [E] 0 5 4.00 nM; the fitted value of the inhibition constant
was K i

app 5 85 pM. Solid curve: enzyme concentration was treated
s an adjustable parameter; the fitted values were [E] 0 5 1.53 nM
nd K i

app 5 478 pM.
pM. The relatively large standard error is caused by
the systematic discrepancy between the experimental
data and the theoretical model (the dashed curve in
Fig. 4 deviates significantly from the data points). The
sum of squared deviations was 0.3798.

In the second round of analysis, represented by the
solid curve in Fig. 4, the enzyme concentration was
treated as an adjustable parameter yielding the best-fit
value of [E] 0 5 1.53 6 0.19 nM. This value represents
approximately 40% of the nominal enzyme concentra-
tion. The best-fit value of the apparent inhibition con-
stant was 478 6 57 pM, which is approximately six
imes the value observed in the first round of nonlinear
egression. The sum of squared deviations between the
xperimental data and the theoretical model was
.0141.

DISCUSSION

Laboratories engaged in high-throughput kinetic
characterization of enzyme inhibitors have an increas-
ing need to develop primary and secondary (follow-up)
screening assays in which the concentrations of the
enzyme and the inhibitor are comparable in magnitude
(“tight binding”). The automated two-stage regression
analysis described in this paper represents a new data-
analysis technique that can be used to improve the
accuracy of such high-throughput enzyme kinetic anal-
ysis without any additional expenditures in time or
materials.

We have recently described a new method for auto-
mated determination of tight-binding enzyme inhibi-
tion constants (4). The method has been applied suc-
cessfully to more than 100,000 inhibitors of mast-cell
tryptase and other therapeutic targets. In the course of
this work, we noticed that the inhibition constants
seemed remarkably sensitive to the presumed enzyme
concentration. Particularly for extremely tight binding
inhibitors, it appeared that small variations in the
enzyme concentration produced large variations in the
observed inhibition constant. To our knowledge, no
systematic statistical treatment of such error propaga-
tion exists in the analytical literature.

In this study we present the results of Monte-Carlo
simulations predicting that for very tight-binding in-
hibitors (K i

app ' 0.1 3 [E] 0 or 0.01 3 [E] 0, see Fig. 1),
a systematic error in enzyme concentration as small as
10–20% might produce as much as an order of magni-
tude systematic distortion of the apparent inhibition
constant. This prediction was confirmed on experimen-
tal data for the kallikrein inhibitor RR-101. At the
presumed enzyme concentration [E] 0 5 4.00 nM the
inhibition constant was 85 pM, while at the best-fit
enzyme concentration [E] 5 1.53 nM, the apparent
0

inhibition constant was 478 pM.
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49TIGHT-BINDING INHIBITION CONSTANTS
Systematic errors in the concentration of enzyme
active sites are probably quite common in biochemical
laboratories, including high-throughput screening es-
tablishments. Enzyme preparations easily change spe-
cific activity due to a host of denaturation processes or
small changes in the assay conditions (pH, tempera-
ture, ionic strength). The question is how to avoid the
consequences, in the form of large systematic errors in
the apparent inhibition constants, of such inadvertent
changes in total enzyme concentration.

The strategy proposed in this report emerged from
the results of Monte-Carlo simulations shown in Figs.
2 and 3. We found that when the inhibition constant is
lower than the total enzyme concentration, it is possi-
ble to extract both quantities from a single dose-re-
sponse curve. On the other hand, when the inhibition
constant is relatively high (K i

app . [E] 0), the enzyme
oncentration cannot be extracted from the experiment

and therefore must be treated as a constant. Fortu-
nately, under such “loose binding” conditions even a
very large systematic error in enzyme concentration
has no effect on the observed inhibition constant, be-
cause the Morrison equation [1] reduces to Eq. [2].

v 5 v0

K i
app

@I#0 1 K i
app . [2]

Based on these results, the proper computational
algorithm for high-throughput analysis of enzyme in-
hibitors is the two-stage regression analysis proposed
in this paper. In the first round of analysis, the pre-
sumed enzyme concentration is treated as a constant
parameter. The apparent inhibition constant so deter-
mined is accepted as the final result if it is higher than
the nominal enzyme concentration. Otherwise the
least-squares fit of the same data to Eq. [1] is repeated,
while the enzyme concentration is treated as an adjust-
able parameter.

Based on Monte-Carlo simulation studies similar to
those reported here, Greco and Hakala (2) proposed
that the accuracy of measuring tight-binding inhibition
constants can be improved by lowering the enzyme
concentration, if possible even to the point where tight-
binding is avoided (that is, where [E] 0 ! K i

app). How-
ever, for many enzyme systems this strategy is not
possible or practical, because commonly used synthetic
substrates are too inefficient. A relatively large amount
of enzyme would then be required to complete the
assay in a reasonably short time. For example, assays
of viral proteases such as cytomegalovirus assembling
(5, 6) may require very high concentrations, in the
micromolar range, in order to detect substantial pro-

teolytic activity. Some mammalian proteases that are
potential therapeutic targets such as prostate specific
antigen (7) or urokinase (8) are routinely assayed at
concentrations approaching 100 nM. Under such con-
ditions even inhibitors with K i

app ' 10 nM behave as
tight binding.”

The two-stage regression method described in this
aper has two important limitations. First, the nomi-
al enzyme concentration must not be too inaccurate.
n exploratory Monte-Carlo simulations (data not
hown), we found that the nominal enzyme concentra-
ion must be accurate approximately within an order of
agnitude. Outside this range, the nonlinear least-

quares regression might produce an erroneous esti-
ate of the apparent inhibition constant, ending in a

oca minimum on the least-squares surface.
The second limitation of the two-stage regression
ethod is illustrated by Fig. 2d. A significant number

f the simulated dose-response curves (approximately
000 or 20% from the total) produced artificially low
stimates for the inhibition constants, practically ap-
roaching zero. This problem can be minimized by a
roper design of the kinetic experiment, that is, by
ptimally choosing the inhibitor concentrations. Our
reliminary results suggest that an optimally designed
eries of inhibitor concentrations includes several
oints near the nominal enzyme concentration. The
nhibitor dilution series chosen in this study (see ex-
erimental section) is not optimal in that regard. The
esults of a detailed study on the optimal design of
igh-throughput kinetic experiments will be reported
lsewhere.
It has been said (9) that “in the 100 years to 1995, the

harmaceutical industry worked on about 500 targets
ith a limited number of compounds, whereas now,
sing new technologies like genomics, high throughput
creening, and combinatorial chemistry, drug compa-
ies will see an explosion in the number of targets and

eads [they] can explore. To improve the transition
rom research to development it is necessary to auto-

ate the research and development process [ . . . ] us-
ng information technologies to make better use of ex-
sting data.” Our two-stage regression method
epresents a step toward this goal. A suitable computer
rogram for performing the kinetic analysis is
vailable free of charge via the internet (http://www.
iokin.com).
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