Determination of Binding Affinities and Molecular Mechanisms – case studies with nucleotide binding proteins

MAX-PLANCK-GESELLSCHAFT

Jochen Reinstein

Max Planck-Institute for Medical Research Dept. of Biomolecular Mechanisms Heidelberg, Germany

London May 2 2014

Motivation – Systems under investigation

Chaperones are ATP driven molecular machines – e.g. DnaK/Hsc70 , Hsp90 and ClpB/Hsp104 II) ClpB disaggregation

Chaperones are ATP driven molecular machines – case study DnaK/Hsc70 system

Methods/Signals to measure nucleotide binding

- Equilibrium dialysis
- Gel filtration
- NMR
- Absorption
- SPR
- Thermophoresis
- ITC
- DSC
- Fluorescence (Intensity, Anisotropy, lifetime, FRET)

Potential origin of fluorescence signals

- Intrinsic (aa Trp, Tyr, Phe)
- Co-factors (NADH, FAD)
- Labeled Protein (e.g. fluorophore attached to Cys)
- Engineered protein (e.g. unnatural aa, GFP-tag)
- Fluorescent Nucleotide Analogs

Fluorescent Nucleotides used in Chaperone Research

Size of Chromophore is important, the smaller the better. ===→ Large chromophores may

disturb system to be measured

But!

Larger chromophores have better spectroscopic properties

Structures of $(P\gamma)$ -MABA-ATP (1), (C8)-MABA-ADP (2) and MANT-ADP (3a). For (C8)-MABA-ADP (2) the two conformations are shown. Unlike the other modified nucleotide analogs, the fluorescent nucleotide 2 is supposed to be mostly in the *syn*-conformation in the unbound form, while undergoing a conformational change to the *anti*-form when bound to DnaK. For MANT-ADP (3a) the two isomers are depicted. In solution the isomers of nucleotide 3a are in equilibrium with 33 % of 2'-isomer and 66 % of the 3'-isomer. === \rightarrow Watch out for variations caused by probes!

Fluorescent nucleotide analogs

Fluorescence Spectra of Nucleotide analogs

(A) Fluorescence spectra of 5 μ M (P γ)-MABA-ATP in the absence (solid in DMF, dashed in buffer) and presence of 60 μ M TRAP1 (dotted). The addition of protein results in a minor increase of fluorescence while DMF reduces the H² fluorescence by the factor of three.

(B) Fluorescence spectra of 5 μ M MANT-ADP in the absence (solid in DMF, dashed in buffer) and presence of 10 μ M ClpB (dotted). The addition of protein results in a 30 % increase of fluorescence which is comparable with the emission in DMF.

(C) Fluorescence spectra of 5 μ M (C8)-MABA-ADP in the absence (solid in DMF, dashed in buffer) and presence of 6 μ M DnaK (dotted). The addition of protein results in a 50 % increase of fluorescence while the fluorescence signal of the nucleotide decreases by half in DMF.

Binding of MABA-ADP to DnaK

N8-(4-N´-<u>m</u>ethylanthr<u>a</u>niloylamino<u>b</u>utyl)-8-<u>a</u>minoadenosine 5´-diphosphate

(Theyssen et al., 1996)

Titration of MABA-ADP with DnaK (quadratic equation)

Qudratic solution, Simple w eighting						
Ao	= 0.1	995				
Reduced Chi squared = 23.83						
Variable	Value	Std. Err.				
Kd	0.0385	0.0037				
Fo	245.2447	4.2903				

===→ Titration versus premixed solutions

$$F = F_0 + \Delta F_{\text{max}} \cdot \frac{\left[A_0\right] + \left[B_0\right] + Kd_{AB}}{2} - \sqrt{\left(\frac{\left[A_0\right] + \left[B_0\right] + Kd_{AB}}{2}\right)^2 - \left[A_0\right]\left[B_0\right]}}{B_0}$$

Script for simple binding

[task]

data = equilibria ; equilibrium system

task = fit ; alternative simulate

;confidence = monte-carlo; for extended error analysis

;algorithm = differential-evolution; elaborated minimum search

model = KM_binding; name of model in case several are compared

[mechanism]

K + M <===> KM : KdKM dissoc; use Kd value ; binding of MABA-ADP(M) to DnaK(K)!

[constants] KdKM = 0.09 ??; fitted parameter

[responses] ; Signal scaling ;M = 1000 ? KM = 3000 ?

[output] directory current\output

```
directory current\data
extension txt
```

variable K ; independent variable conc. of DnaK offset auto ? ; in case of non zero start

file data_MABAADP_DnaK ; name of data file concentration M = 0.2 ; initial conc. of MABAADP

[settings] file ./quickset.ini [end]

Content quickset.ini

{ConfidenceIntervals} LevelPercent = 95 ; confidence interval OnlyConstants = y ; only "true" constants are evaluated MaxSteps = 50; profile-t search runs

{Output} BlackBackground = n ; better for printing!

{MonteCarlo} Runs = 1000 ; number of Monte-Carlo runs

[data]

Titration of MABA-ADP with Dank – result Dynafit analysis

 \bigcirc

title

Optimized Parameters

No.	Par#Set	Initial	Final	Std. Error	CV (%)	Note
#1	KdKM	0.09	0.0383631	0.00372551	9.71	
#2	r(M)	1000	1226.56	21.6179	1.76	
#3	r(KM)	3000	2890.8	15.0613	0.52	

Monte Carlo Method

No.	Par#Set	Mean *	Minimum	Maximum
#1	KdKM	0.0383057	0.0287728	0.0477063
#2	r(M)	1226.98	1171.7	1291.71
#3	r(KM)	2890.59	2847.94	2932.04

Variable	Value	Std. Err.
Kd	0.0385	0.0037
Fo	245.2447	4.2903
Fmax	578.2120	2.9881

Displacement of bound MABA-ADP from DnaK.MABA-ADP complex

A competitive system – cubic equation

$$A+B \xrightarrow{Kd_{AB}} AB \qquad A+C \xrightarrow{Kd_{AC}} AC$$

$$Kd_{AB} = \frac{\left[A_{f}\right]\left[B_{f}\right]}{\left[AB\right]}; \quad Kd_{AC} = \frac{\left[A_{f}\right]\left[C_{f}\right]}{\left[AC\right]}$$

 $[A_0] = [A_f] + [AB] + [AC], [B_0] = [B_f] + [AB], [Co] = [C_f] + [AC]$

$$[AC]^{3} + a_{1}[AC]^{2} + a_{2}[AC] + a_{3} = 0$$

$$a_{o} = Kd_{AB} - Kd_{AC}$$

$$a_{1} = \frac{[A_{o}](Kd_{AC} - Kd_{AB}) + [B_{o}](2Kd_{AC} - Kd_{AB}) + [C_{o}]Kd_{AB} - Kd_{AB}^{2} + Kd_{AB}Kd_{AC}}{a_{o}}$$

$$a_{2} = \frac{[A_{o}][B_{o}](Kd_{AB} - 2Kd_{AC}) - [B_{o}]^{2}Kd_{AC} - [B_{o}]Kd_{AB}([C_{o}] + Kd_{AC})}{a_{o}}$$

$$a_{3} = \frac{([A_{o}][B_{o}])^{2}Kd_{AC}}{a_{o}}$$

Cubic equations needs a search for the true solution – only one solution is valid!

$$Q = \frac{a_1^2 - 3a_2}{9}; R = \frac{2a_1^3 - 9a_1a_2 + 27a_3}{54}$$

$$Q^3 - R^2 \ge 0$$

$$\Theta = \arccos\left(\frac{R}{\sqrt{Q^3}}\right)$$

$$x_1 = -2\sqrt{Q}\cos\left(\frac{\Theta}{3}\right) - \frac{a_1}{3}$$

$$x_2 = -2\sqrt{Q}\cos\left(\frac{\Theta + 2\pi}{3}\right) - \frac{a_1}{3}$$

$$x_3 = -2\sqrt{Q}\cos\left(\frac{\Theta + 4\pi}{3}\right) - \frac{a_1}{3}$$

$$R^2 - Q^3 > 0$$

$$[AC] = -sign(R) \left[\sqrt[3]{\sqrt{R^2 - Q^3} + |R|} + \frac{Q}{\sqrt[3]{\sqrt{R^2 - Q^3} + |R|}}\right] - \frac{a_1}{3}$$

Displacement titration – ADP vs. MABA-ADP (DnaK) – cubic equation

Parameter	Value	Std. Error
initial fluorescence	275.2705	3.1135
Amplitude	283.5723	4.7767
Kd of competing lig.	0.0386	1.33704e-011

Initial values . ===→ [DnaK] 2.04 µM [MABA-ADP] 0.195 KdKM 0.0385 (from binding titration)

Note: Errors will be introduced through dilution effects!

Using Dynafit for competitive displacement analysis

```
[task]
data = equilibria
task = fit
```

```
; confidence = monte-carlo
; algorithm = differential-evolution
```

```
model = KMA; competition of M-ADP and ADP
```

```
[mechanism]

K + M <==> KM : KdKM dissoc

; binding MABA-ADP(M) to DnaK(K)

K + A <==> KA : KdKA dissoc

; binding ADP(A) to DnaK(K)

[constants]

KdKM = 0.1 ??;

KdKA = 0.0385 ;

[responses]

M = 1000 ?

KM = 3000 ?
```

[output] directory current\output [data] directory current\data extension txt variable A ;offset auto ?

file MABAADP_DnaK_ADP_data concentration M = 0.1915, K = 2.04

[settings] file ./quickset.ini [end]

Displacement titration – ADP vs. MABA-ADP (DnaK) -Dynafit

No.	Par#Set	Initial	Final	Std. Error	CV (%)
#1	KdKM	0.1	0.033458	0.00162515	4.86
#2	r(M)	1000	1414.22	9.78474	0.69
#3	r(KM)	3000	2904.03	11.8377	0.41

Monte Carlo Method Optimized Parameters

No.	Par#Set	Mean *	Minimum	Maximum
#1	KdKM	0.033445	0.0291649	0.0390008
#2	r(M)	1414.06	1386.03	1443.14
#3	r(KM)	2904.49	2871.94	2939.57

Case study DnaK/Hsc70 system – nucleotide exchange factor GrpE

Nucleotide exchange factor GrpE – a ternary system

(Packschies et al., 1997)

DnaK-GrpE-MABA-ADP (KEM), a ternary system

$$\mathbf{K}_{d}^{\text{equ}} \mathbf{1} = \frac{\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} A \end{bmatrix}}{\begin{bmatrix} K.A \end{bmatrix}} \quad \mathbf{K}_{d}^{\text{equ}} \mathbf{2} = \frac{\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} E \end{bmatrix}}{\begin{bmatrix} K.E \end{bmatrix}} \quad \mathbf{K}_{d}^{\text{equ}} \mathbf{3} = \frac{\begin{bmatrix} K.A \end{bmatrix} \begin{bmatrix} E \end{bmatrix}}{\begin{bmatrix} K.E.A \end{bmatrix}} \quad \mathbf{K}_{d}^{\text{equ}} \mathbf{4} = \frac{\begin{bmatrix} K.E \end{bmatrix} \begin{bmatrix} A \end{bmatrix}}{\begin{bmatrix} K.E.A \end{bmatrix}}$$

23

DnaK-GrpE-MABA-ADP (KEM), a ternary system

(\Box) 2 µM DnaK and 1 µM MABA-ADP; (\circ) 1 µM DnaK and 1 µM MABA-ADP; (\triangle) 0.5 µM DnaK and 2 µM MABA-ADP

(Packschies et al., 1997)

Equation for global fit of equilibrium system in scientist

// GrpE : DnaK : MABA-ADP, File dnakgrpE.eqn IndVars: C1 DepVars: A1, B1, AB1, AC1, ABC1, Cf1, F1, A2, B2, AB2, AC2, ABC2, Cf2, F2, A3, B3, AB3, AC3, ABC3, Cf3, F3 Params: K1, K2, K3, Yb1, Yb2, Yb3, Yab1, Yab2, Yab3, ATOT1,ATOT2,Atot3, BTOT1,Btot2, btot3,n AB1=(A1*B1)/K1 AC1=(A1*Cf1)/K2 ABC1=(AB1*Cf1)/K3 ABC1=(AC1*B1)*(K2/(K1*K3)) ATOT1=A1+AB1+AC1+ABC1 BTOT1=B1+AB1+ABC1 n*C1=Cf1+AC1+ABC1 F1=Yb1+(Yab1*(AB1+ABC1))/BTOT1 0<A1<ATOT1 0<B1<BTOT1 0<Cf1<n*C1 AB2=(A2*B2)/K1 AC2=(A2*Cf2)/K2 ABC2=(AB2*Cf2)/K3 ABC2=(AC2*B2)*(K2/(K1*K3)) ATOT2=A2+AB2+AC2+ABC2 BTOT2=B2+AB2+ABC2 n*C1=Cf2+AC2+ABC2 F2=Yb2+(Yab2*(AB2+ABC2))/BTOT2 0<A2<ATOT2 0<B2<BTOT2 0<Cf2<n*C1

AB3=(A3*B3)/K1 AC3=(A3*Cf3)/K2 ABC3=(AB3*Cf3)/K3 ABC3=(AC3*B3)*(K2/(K1*K3)) ATOT3=A3+AB3+AC3+ABC3 BTOT3=B3+AB3+ABC3 n*C1=Cf3+AC3+ABC3 F3=Yb3+(Yab3*(AB3+ABC3))/BTOT3 0<A3<ATOT3 0<B3<BTOT3 0<Cf3<n*C1 //Parameter values K1=0.09 K2=0.002 K3=1.5 Yb1=1.154 Yb2=1.076 Yb3=1.224

Ternary system in Dynafit

[task]

data = equilibrium task = fit confidence = monte-carlo

model = KEAGlobalEqu

[mechanism]

K + M <===> KM : KdKM dissoc K + E <==> KE : KdKE dissoc KE + M <===> KEM : KdKE_M dissoc

[constants]

KdKM = 0.09 KdKE = 0.001 ? ;(0.001..0.01) KdKE_M = 20 ? ;(1..1000)

[responses] ; M = 1.0 ?, KM = 2.0 ?

[equilibria]

[data] directory current\data extension txt

variable E ; offset auto ?

file KM05_2 conc K = 0.5, M = 2.0 resp M = 1.0 ?, KM = 2.0 ?, KEM = 1.0 * KM ;offset auto ?

file KM1_1 conc K = 1.0, M = 1.0 resp M = 1.0 ?, KM = 2.0 ?, KEM = 1.0 * KM ;offset auto ?

file KM2_1 conc K = 2.0, M = 1.0 resp M = 1.0 ?, KM = 2.0 ?, KEM = 1.0 * KM ;offset auto ?

[output] directory current\output [settings] ; file ./quickset.ini

[end]

Fit ternary system dynafit

Parameters of fit ternary system dynafit

No.	Par#Set	Initial	Final	Std. Error	CV (%)	Note
#1	KdKE	0.001	0.000185668	0.000894791	481.93	
#2	KdKE_M	20	2.19451	2.56378	116.83	
#3	r(M)#1	1	0.940233	0.213096	22.66	
#4	r(KM)#1	2	3.71762	0.701888	18.88	
#5	r(M)#2	1	0.525555	0.562562	107.04	
#6	r(KM)#2	2	2.9315	0.235754	8.04	
#7	r(M)#3	1	1e-006	1.10738	110738059.25	MIN
#8	r(KM)#3	2	2.67667	0.133496	4.99	