

Single-site binding: one [mechanism] P + L <==> P.L	complex	formed		
[mechanism] P + L <==> P.L				
P + L <==> P.L				
	: Kd	disso	be	
[mechanism]	лпріехез	Tormed		
P + L <==> P.L	:	Kd1	dissoc	
P.L + L <==> P.I	L2 :	Kd2	dissoc	
P + L <==> P.L P.L + L <==> P.1	: L2 :	Kd1 Kd2	dissoc dissoc	

Extensive	Intensive
Signal is proportional to concentrations	Signal is proportional to mole fractions
fluorescence intensity NMR peak area UV/Vis absorbance HPLC peak area radioactive counts optical rotation 	fluorescence polarization (anisotropy NMR chemical shift
	I

Summary					
Statistical factors					
Independent binding sites: K_ds are linked via statistical factors. Cooperative binding sites: K_ds can attain arbitrary values.					
Thermodynamic boxes					
The " leave one out" rule: thermodynamic cycles must remain open. It does not matter which edge of the box is left out.					
Intensive physical quantities					
Use intensive keyword for NMR chemical shift or fluorescence <i>polarization</i> . Omit this keyword for fluorescence <i>intensity</i> , UV/Vis absorbance, etc.					
Rapid equilibrium enzyme kinetics					
All rapid equilibrium enzyme kinetics can be expressed as "binding equilibria". Turnover numbers (" k_{cat} " values) become "responses" in the binding model.					
Binding Constants & Mechanisms pt.1 30					