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Evolutionary Computing: Initial Estimate Problem
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Lecture outline

• The problem:

Fitting nonlinear data usually requires an initial estimate of model parameters.
This initial estimate must be close enough to the “true” values.

• The solution:

Use a data-fitting method that does not depend on initial estimates.

• An implementation:

The Differential Evolution algorithm (Price et al., 2005).

• An example:

Kinetics of forked DNA binding to the protein-protein complex formed
by DNA-polymerase sliding clamp (gp45) and clamp loader (gp44/62).
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The ultimate goal of analyzing kinetic / binding data 

SELECT AMONG POSSIBLE MOLECULAR MECHANISMS

concentration

signal

computer

Select most plausible model

competitive ?
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mechanism B
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mechanism A

EXPERIMENTAL DATA

A VARIETY OF
POSSIBLE
MECHANISMS
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Most models in natural sciences are nonlinear

LINEAR VS. NONLINEAR MODELS

Linear

y = A + k x
Nonlinear

y = A [1 - exp(-k x)]
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We need initial estimates of model parameters

NONLINEAR MODELS REQUIRE INITIAL ESTIMATES OF PARAMETERS

computer
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The Initial Estimate Problem:

• Estimated parameters
most be “close enough”.

• How can we guess them?

• How can we be sure that
they are “close enough”?
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The crux of the problem: Finding global minima

• Least-squares fitting only goes "downhill"

• How do we know where to start?

MODEL PARAMETER

SUM OF SQUARED DEVIATIONS       Σ(data - model)2

global minimum

data - model = "residual"
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Charles Darwin to the rescue 

BIOLOGICAL EVOLUTION IMITATED IN "DE"

ISBN-10: 3540209506

Charles Darwin (1809-1882)
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Specialized numerical software: DynaFit

http://www.biokin.com/dynafitDOWNLOAD

Kuzmic (2009) Meth. Enzymol., 467, 247-280

2009

DynaFit implements the

Differential Evolution algorithm

for global sum-of-squares minimization.
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Biological metaphor: "Gene, allele"

gene

BIOLOGY COMPUTER

...AAGTCG...GTAACCGG...

four-letter alphabet
variable length

"keratin"

• sequence of bits representing a number

...01110011000001101101110011...

• two letter alphabet
• fixed length (16 or 32 bits)

"KM" "kcat"
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"Chromosome, genotype, phenotype"

genotype

BIOLOGY COMPUTER

...AAGTCGGTTCGGAAGTCGGTTTA...

keratin

oncoprotein

phenotype

• particular combination of all model parameters

isMM

M

KKSKS
KSVv

/][/][1
/][

2max ++
=

011010110110011110011010001111101101

KM=4.56

Vmax=1.23
Kis=78.9

full set of parameters
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"Organism, fitness"

genotype

BIOLOGY COMPUTER

...AAGTCGGTTCGGAAGTCGGTTTA...

keratin

oncoprotein

• FITNESS: 
agreement between the data and the model
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FITNESS:
"agreement" with the environment
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"Population"

BIOLOGY COMPUTER

low fitness

Vmax KM Kis

medium
fitness Vmax KM Kis

high fitness

Vmax KM Kis
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DE Population size in DynaFit

number of population

members per optimized
model parameter

number of population

members per order of
magnitude
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"Sexual reproduction, crossover"

BIOLOGY COMPUTER

01101011011001111001101 00011111011

01101011011001111001101 11100011011

mother

father

"sexual mating"
probability pcross

01101011011001111001101    11100011011

child

random crossover point

Vmax KM Kis
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"Mutation, genetic diversity"

BIOLOGY COMPUTER

01101011011 001111001101  11100011011
father

Vmax KM Kis

11100111011 001011010101  11001011001
mutant father

Vmax
(*)

KM
(*) Kis

(*)

mutation
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"Mutation, genetic diversity"

01101011011 001111001101  11100011011
aunt #1

Vmax
(1)

KM
(1) Kis

(1)

11100111011 001011010101  11001011001
aunt #2

Vmax
(2)

KM
(2) Kis

(2)

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM - STEP 1

Compute difference between two randomly chosen “auntie” phenotypes

subtract

11100111011 001011010101  11001011001

aunt #2 minus aunt #1

Vmax
(2)-Vmax

(1)
KM

(2)-KM
(1) Kis

(2)-Kis
(1)
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"Mutation, genetic diversity"

01101011011 001111001101  11100011011
father

Vmax KM Kis

11100111011 001011010101  11001011001

mutant father

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM - STEP 2

Add weighted difference between two “uncle” phenotypes to “father”

add a fraction of

11100111011 001011010101  11001011001

aunt #2 minus aunt #1

Vmax
(2)-Vmax

(2)
KM

(2)-KM
(1) Kis

(2)-Kis
(1)

Vmax
*

KM
* Kis

*
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"Mutation, genetic diversity"

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM

KM
* = KM + F × (KM

(1) − KM
(2)) 

EXAMPLE: Michaelis-Menten equation
M

max ][
][v
KS
SV
+

=

"father" “aunt 1" “aunt 2"

"mutant father"

weight (fraction)
mutation rate
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DE “undocumented” settings in DynaFit

probability that
“child” inherits
“father's” genes, not
“mother's” genes

These DE tuning constants
are “undocumented” in the
DynaFit distribution.

fractional difference
used in mutations
KM

* = KM + F × (KM
(1) − KM

(2)) 

six different
mutation strategies
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"Selection"

BIOLOGY COMPUTER

high fitness

more likely
to breed

0110101101100111100110100011111011

Vmax KM Kis

more likely
to be carried to the next generation

low sum of squares

low fitness less likely
to breed

0000000000111111111111100000000000

Vmax KM Kis

less likely
to be carried to the next generation

high sum of squares
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Basic Differential Evolution Algorithm - Summary

1 Randomly create the initial population (size N) 

Repeat until almost all population members have very high fitness:

2 Evaluate fitness: sum of squares for all population members

5 Natural selection: keep child in gene pool if more fit than mother

4 Sexual reproduction: random crossover with probability Pcross

3 Mutation: random gene modification (mutate father, weight F)
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Example: DNA + clamp / clamp loader complex

DETERMINE ASSOCIATION AND DISSOCIATION RATE CONSTANT IN AN A + B ⇔ AB SYSTEM

Courtesy of Senthil Perumal, Penn State University (Steven Benkovic lab)

see Lecture 1 for details
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Example: DynaFit script for Differential Evolution

INSERT A SINGLE LINE IN THE [TASK] SECTION

constraints !
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Example: Initial population

BOTH RATE CONSTANTS SPAN TWELVE ORDERS OF MAGNITUDE
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Example: The evolutionary process

SNAPSHOTS OF k1 / k2 CORRELATION DIAGRAM - SPACED BY 10 “GENERATIONS”

0 10 20 30

40 50 60 70
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Example: Final population

BOTH RATE CONSTANTS SPAN AT MOST ±30% RANGE RELATIVE TO NOMINAL VALUE
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Example: The “fittest” member of final population

THIS IS (PRESUMABLY) THE GLOBAL MINIMUM OF SUM-OF-SQUARES

data

model

residuals

compare with
“good” estimate
from Lecture 1
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Example: Comparison of DE and regular data fitting

DIFFERENTIAL EVOLUTION (DE) FOUND THE SAME FIT AS THE “GOOD” ESTIMATE

sum of
squares

relative
sum of sq.

“best-fit”
constants

initial
estimate

k1 = 1
k2 = 1

k1 = 100
k2 = 0.01

0.002308

0.002354

1.00

1.02

k1 = 2.2 ± 0.5
k2 = 0.030 ± 0.015

k1 = 0.2 ± 3.4
k2 = 0.2 ± 0.6

“g
o
o
d
”

“b
ad

”

k1 = 10-6 – 10+6

k2 = 10-6 – 10+6
0.002308 1.00 k1 = 2.2 ± 0.5

k2 = 0.030 ± 0.015
1000

random
estimates

le
ct

u
re

 1
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Significant disadvantage of DE: very slow

DYNAFIT CAN TAKE MULTIPLE DAYS TO RUN A COMPLEX PROBLEM

algorithm computation time

Levenberg-Marquardt
with two restarts

Differential Evolution
with four restarts

(population size: 1000)

0.88 sec

12 min 31 sec

DynaFit 4.065 on DNA / clamp / clamp loader example:

1

853

relative time

1 second
1 minute

10 minutes

15 minutes
15 hours

6 days
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Example of Differential Evolution in DynaFit

J. Biol. Chem. 283, 11677 (2007)

This took one week
of computing
on the Linux cluster
in Heidelberg.
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Example: Systematic scan of many initial estimates

CAREFUL!  THIS IS FASTER THAN DIFFERENTIAL EVOLUTION BUT DOES NOT ALWAYS WORK

1. generate all possible
combinations of rate constants

2. compute initial sum of squares
for each combination

3. rank combinations by initial
sum of squares

4. select the best N combinations

5. perform a full fit for those N

6. rank results again

ALGORITHM

7 × 7 = 49 combinations of kon and koff
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Example: Systematic scan – Phase 1

AFTER EVALUATING THE INITIAL SUM OF SQUARES FOR ALL 49 COMBINATIONS OF k1 and k2
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Example: Systematic scan – Phase 2

AFTER RANKING THE INITIAL ESTIMATES AND SELECTING 20 BEST ONES BY SUM OF SQUARES
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Example: Systematic scan – Phase 3

AFTER PERFORMING FULL REFINEMENT FOR 20 BEST ESTIMATES OUT OF 49 TRIED

“success zone”

The best initial
estimates do not
produce the best
refined solution!
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Summary and conclusions

1. Finding good-enough initial estimates is a very difficult problem.

2. One should use system-specific information as much as possible.
This includes using the literature and/or general principles for “intelligent” guesses.

3. Always use the “Try” method in DynaFit to display the initial fit.
Make sure that the initial estimate is at least approximately correct.

4. The Differential Evolution algorithm almost always helps.
However, it can be excruciatingly slow (running typically for multiple hours).

5. The systematic scan (task = estimate) sometimes helps.
However, the “best” initial estimates almost never produce the desired solution!

6. DynaFit is not a “silver bullet”: You must still use your brain a lot.


