

Lecture	e outline	
•	The problem:	
	Traditional equations for fitting biomolecular binding data restrict the experimental design. Typically, at least one component must be present in very large excess.	
•	The solution:	
	Abandon algebraic equations entirely. Use iterative numerical models, which can be derived automatically by the computer.	
•	An implementation:	
	Software <i>DynaFit</i> .	
•	An example:	
	Kinetics of forked DNA binding to the protein-protein complex formed by DNA-polymerase sliding clamp (gp45) and clamp loader (gp44/62).	
BioKin	BKEB Lec 1: Numerical Models	2

THERE IS NO SUCH THING AS A FREE LUNCH		
ADVANTAGE	ALGEBRAIC MODEL	DIFFERENTIAL MODEL
can be derived for any molecular mechanism	-	+
can be derived automatically by computer	-	+
can be applied under any experimental conditions	-	+
can be evaluated without specialized software	+	-
requires very little computation time	+	-
does not require an initial estimate	+	-
is resistant to truncation and round-off errors	+	-
has a long tradition: many papers published	+	-
RKER Lec 1: Numerical N	Indels	7

IN PRACTICE WE	ENCOUNTER ONLY ZE	RO-, FIRST-, AND SECO	ND-ORDER REACTION	S	
ORDER	PHYSICAL MEANING	NOTATION	DYNAFIT NOTATION		
zero-	constant-rate influx or efflux		x>	:	v
first- uni-molecular monomolecular	isomerization or dissociation of one molecule	$\begin{array}{c} \mathbf{A} \xrightarrow{k_1} \mathbf{B} \\ \mathbf{A} \xrightarrow{k'_1} \mathbf{B} + \mathbf{C} \end{array}$	A> B C> A + B	:	k1 k1
second- bimolecular	binding (association) of two molecules	$\mathbf{A} + \mathbf{B} \xrightarrow{k_2} \mathbf{C}$	A + B> C	:	k2

NONLINEAR REGRESSION ANALYSIS ALWAYS REQ	UIRES INITIAL ESTIMATES OF THE SOLUTION
the initial estimate of rate co	onstants
[mechanism] DNA + Clamp.Loader <==> Complex	: kon koff
<pre>[constants] kon = 1 koff = 1 ?+</pre>	optimized model parameters
[concentrations] DNA = 0.1 Clamp.Loader = 0.1	A VERY DIFFICULT PROBLEM
[responses] Complex = 1 ?	HOW TO GUESS "GOOD ENOUGH" INITIAL ESTIMATES
[data] file .//dl-edit.txt offset auto ?	OF RATE CONSTANTS?

Exa	mple: "G	Good" vs. "Ba	d" resul	ts - comparison	
	initial estimate	sum of squares	relative sum of sq.	"best-fit" constants	$\mathbf{K}_{dr} \mathbf{nM} = \mathbf{k}_2/\mathbf{k}_1$
"boog"	$k_1 = 1 \\ k_2 = 1$	0.002308	1.00	$\begin{array}{l} k_1 = 2.2 \pm 0.5 \\ k_2 = 0.030 \pm 0.015 \end{array}$	13 nM
'bad"	$k_1 = 100$ $k_2 = 0.0$	0.0023 <mark>54</mark>	1.02	$k_1 = 0.2 \pm 3.4$ $k_2 = 0.2 \pm 0.6$	1000 nM
Dyn Error	aFit <i>warnı</i> status	ings from runnii 3	ng the "ba	d" estimate:	
Error message WARNING: No convergence in Lenvenberg-Marquardt algorithm. Consider increasing the number of iterations. WARNING: Hessian matrix inversion failed. This problem is ill-conditioned. Parameter errors and model inference bands a suspect. To fix this problem, try removing at least one severely redundant parameter from the fitting model.			m. Consider × inversion failed. ference bands are ly redundant		
Kin		BKE	EB Lec 1: Num	erical Models	33

