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Optimal experimental designs for the dose–response screening of enzyme inhibitors were studied within
the framework of the Box–Lucas theory. If the enzyme concentration E is considered as a fixed constant,
an exact two-point D-optimal design consists of a pair of inhibitor concentrations equal to I1 ¼ 0 and
I2 ¼ Eþ K , where K is the apparent inhibition constant. If the enzyme concentration is treated as an
adjustable parameter, an empirical three-point D-optimal design consists of three inhibitor concentra-
tions equal to I1 ¼ 0, I2 ¼ Eþ 3K , and I3 ¼ 0:7E. These results were applied to design optimized, irregu-
larly spaced concentration series for routine inhibitor screening. A heuristic Monte Carlo simulation
study confirmed that the optimized dilution series is significantly more efficient than the classic series
characterized by a constant dilution ratio. An online calculator to create optimized dilution series is freely
available at http://www.biokin.com/design/.

� 2011 Elsevier Inc. All rights reserved.
This study used the statistical theory of optimal experiment de-
sign [1,2], specifically the Box–Lucas D-optimality criterion [3], to
design optimized experiments for the dose–response screening of
enzyme inhibitors.

Similar ideas have been used previously to design optimal
experiments for the determination of the Michaelis constant [4],
KM, or for the determination of ligand–receptor dissociation con-
stants [5], Kd, by biophysical methods. These previously published
reports assumed that there exists an approximate estimate of the
given parameter of interest (either KM or Kd). This initial estimate
then serves as the starting point for the optimized choice of sub-
strate or ligand concentrations to be used in an experimental
study. We have extended these ideas to the situation where, in-
stead of a single initial estimate of the apparent inhibition constant
[6,7], K, we have a range of possible values that characterize en-
zyme inhibitors in the screening pool.

We derived two specialized formulas for the optimal design of
dose–response experiments depending on whether the enzyme
concentration, E, is known exactly or whether it needs to be esti-
mated from the data. When the enzyme concentration is treated
as a fixed constant, the optimal design consists of two measure-
ments of initial reaction rates: one measured in the absence of
the inhibitor ðI1 ¼ 0Þ and the other measured at I2 ¼ Eþ K. When
the enzyme concentration must be treated as a parameter
ll rights reserved.
optimized simultaneously with the apparent inhibition constant
[8], the optimal design consists of three measurements. The first
is the control data point at zero inhibitor concentration. The two
approximately optimal inhibitor concentrations are I2 ¼ Eþ 3K
and I3 ¼ 0:7E.

Given a range of inhibition constants of interest, we applied the
above formulas to a particular dose–response screening scenario to
generate an optimally designed dilution series. Unlike a conven-
tional dilution series, where adjacent inhibitor concentrations dif-
fer by a constant increment or ratio, each optimally designed
dilution series is irregularly spaced. The efficiency of these opti-
mized, irregularly spaced dilution series was tested in Monte Carlo
simulations, and was shown to be superior to the conventional
experimental design. As an illustrative example, an optimized dilu-
tion series allowed a reliable determination of apparent inhibition
constants ranging from micromolar to picomolar values using a
compact design involving only eight data points.

Theory

Rate equation and sensitivity functions

According to Eq. (1), the initial rate of an enzyme-catalyzed
reaction, v, depends on three factors: the inhibitor concentration
I, the enzyme concentration E, and the apparent inhibition constant
K [6,7]. In Eq. (1), V is the control velocity observed in the absence
of inhibitors (I = 0):
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The Box–Lucas statistical theory of optimal experimental design
(see below) uses the corresponding sensitivity functions, shown in
Eqs. (2) to (4), which are partial derivatives of the rate equation
with respect to optimized model parameters.

Box–Lucas method

The Box–Lucas theory of optimal experimental design [3] had
been previously applied in enzymology to Michaelis–Menten satu-
ration kinetics [4] and to ligand–binding experiments [5]. It is a
representative example of optimal design methods based on the
D-optimality criterion [2], essentially maximizing the determinant
of the Fisher information matrix.

In the following derivations, we distinguish two separate sce-
narios that differ in the number of optimized model parameters
(either two or three). In the first scenario, only the control rate V
and the inhibition constant K are treated as adjustable model
parameters, whereas the enzyme concentration E is treated as a
fixed constant. In the second scenario, not only V and K but also
E is treated as an adjustable model parameter. A previous report
[8] discussed in detail the experimental conditions under which
either the two-parameter model (V, K) or the three-parameter
model (V, K, E) is most appropriate for any given dataset.

Optimal design for fixed enzyme concentration E

As we demonstrated in a previous theoretical study based on
Monte Carlo simulations [8], if the apparent inhibition constant K
is even slightly larger than the enzyme concentration E, it becomes
impossible to determine both K and E from the same dataset. The
only two model parameters that can be determined from a dose–
response curve are V and K, and E must be treated as a fixed con-
stant in Eq. (4). In that case, the determinant of the Box–Lucas sen-
sitivity matrix is defined by Eq. (5), where I1 and I2 are inhibitor
concentrations comprising the two-point experimental design:

DðI1; I2Þ ¼
ovðI1Þ

oV
ovðI1Þ

oK
ovðI2Þ

oV
ovðI2Þ

oK

�����
�����: ð5Þ

One of the two adjustable model parameters is the ‘‘control’’
reaction velocity, V, observed in the absence of inhibitors. It follows
that one of the two design points must, in fact, correspond to zero
inhibitor concentration, I1 ¼ 0. Thus, the determinant simplifies to
Eq. (6):
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From solving the equation ojDð0; I2Þj=oI2 ¼ 0 for I2, it follows
that the maximum of jDð0; I2Þj occurs at I2 ¼ Eþ K. This result is
very similar to what other authors [5] have found for certain clas-
ses of ligand-binding studies. In summary, if the enzyme concen-
tration must be treated as a fixed constant, the two-point
optimal design includes inhibitor concentrations defined by Eqs.
(7) and (8).
Two-point design for fixed E:

I1 ¼ 0 ð7Þ
I2 ¼ K þ E ð8Þ
Optimal design for simultaneous fit of E and K

We previously found [8] that under experimental conditions
where 0:01 < E=K < 1, both E and K can be determined from the
same dose–response curve. This amounts to performing an active
site titration while simultaneously measuring the inhibition con-
stant of the particular tight-binding inhibitor. Under such circum-
stances, the determinant of the Box–Lucas sensitivity matrix is
defined by Eq. (9), where I1, I2, and I3 are inhibitor concentrations
comprising the three-point experimental design:
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As before, one of the optimally chosen inhibitor concentrations
must be zero, I1 ¼ 0, because one of the adjustable model parame-
ters is the control reaction rate V. At zero inhibitor concentration
the partial derivatives with respect to K and E both are zero and
ov=oV ¼ 1. Therefore, Eq. (9) simplifies to Eq. (10)
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According to the Box–Lucas method, finding the optimally cho-
sen inhibitor concentrations I2 and I3 (in addition to I1 ¼ 0Þ
amounts to finding those two particular inhibitor concentrations
at which the absolute value Dð0; I2; I3Þj j is at a maximum. In this in-
stance we no longer can find an analytic (algebraic) solution to the
maximization problem and must resort to numerical iterative
methods. In this work, the maximization of Dð0; I2; I3Þj j in Eq. (10)
was performed by Powell’s method [9].
Results

Empirical design for simultaneous fit of K and E

According to Eq. (10), the optimal inhibitor concentrations of a
three-point experimental design are found by maximizing the
absolute value of the determinant D. Fig. 1 shows the numerical
values of the determinant at one particular value of the inhibition
constant (K = 0.1 nM) and one particular value of the enzyme con-
centration (E = 1 nM). The open circle in Fig. 1 represents the cor-
responding optimal design, namely, I1 ¼ 0; I2 ¼ 1:3 nM, and
I3 ¼ 0:6 nM.

The reason why there are two ‘‘hot spots’’ in Fig. 1 is that the
two inhibitor concentrations we are concerned with are inter-
changeable. Indeed, labeling one of them as I1 (the ‘‘first’’ inhibitor
concentration) and the other as I2 (the ‘‘second’’ concentration) is
purely arbitrary. For this reason, the contour plot in Fig. 1 is by def-
inition diagonally symmetrical.

Numerical maximization of the Box–Lucas determinant value
defined by Eq. (10) was performed across a wide range of inhibi-
tion constants K. The results are summarized in Fig. 2.

Fig. 2 shows that the dependence of the optimally chosen inhib-
itor concentrations I2 and I3 on the ‘‘true’’ value of the inhibition
constant K is slightly nonlinear. One of the two inhibitor concentra-
tions ðI2Þ stays approximately constant, varying only slightly be-
tween I2 ¼ 0:6 nM and I2 ¼ 0:8 nM. The other inhibitor
concentration ðI3Þ increases approximately linearly with the slope



Fig.1. Representative plot of the Box–Lucas determinant Dð0; I2; I3Þj j according to
Eq. (10) against the inhibitor concentrations I2 and I3, assuming E = 1 nM and
K = 0.1 nM. The maximum value of Dj j (white circle) occurs at I2 ¼ 1:3 nM and
I3 ¼ 0:6 nM.

Fig.2. Plot of the optimal inhibitor concentrations I2 and I3 against the inhibition
constant K, assuming E = 1 nM. Each point corresponds to a particular maximum
value of Dð0; I2; I3Þj j according to Eq. (10), as illustrated in Fig. 1 for the particular
case of K = 0.1 nM.

Table 1
An eight-point rational design for inhibitor screening at E = 1 nM.

K (nM) I1 (nM) I2 (nM) I3 (nM) Point Iopt (nM)

1000 0 1001 – 1 1001
100 0 101 – 2 101
10 0 11 – 3 11
1 0 4 0.7 4 4
0.1 0 1.3 0.7 5 1.3
0.01 0 1.03 0.7 6 1.03

7 0.7
8 0
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of 3 and intercept equal to 1. These trends are summarized in the
empirical Eqs. (11) to (13).

Three-point design for optimized E:

I1 � 0 ð11Þ
I2 � 0:7E ð12Þ
I3 � 3K þ E: ð13Þ
In creating Figs. 1 and 2, we used a scaled variant of the rate Eq.
(4), where the enzyme concentration was eliminated by introduc-
ing the scaled inhibitor concentration I� ¼ I=E and the scaled inhi-
bition constant K� ¼ K=E. The resulting Eq. (14) is exactly
equivalent to Eq. (1)
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Rational design for inhibitor screening

For illustration, let us assume that, in a given inhibitor screen-
ing project, we are interested in capturing inhibitory activities
spanning five orders of magnitude from K = 0.01 nM (10 picomo-
lar) to K = 1000 nM (1 micromolar). Let us also assume that, for
various logistical reasons, the enzyme concentration in the screen-
ing study is E = 1 nM. Table 1 illustrates how we can arrive at an
optimal choice of inhibitor concentrations to construct dose–re-
sponse curves.

The first column shows the appropriate order of magnitude of
the apparent inhibition constant, K. For K values larger than E,
we choose a two-point optimal design according to Eqs. (7) and
(8), because under those particular experimental conditions it is
not possible to determine K and E simultaneously [8]. Conversely,
for lower values of the inhibition constant, K 6 E, we choose the
three-point design according to Eqs. (11) to (13). Finally, scanning
the optimal values of inhibitor concentrations listed in the right-
most column of Table 1, the consolidated eight-point screening de-
sign emerges as I ¼ 1001;101;11;4;1:3;1:03;0:7; and 0 nM.

Let us illustrate the efficiency of this optimal design by assum-
ing that a given tight-binding enzyme inhibitor is characterized by
the inhibition constant K = 50 pM. Fig. 3 shows a simulated dose–
response curve for such a hypothetical inhibitor. The filled rectan-
gles in Fig. 3 (pseudo-experimental data points) were simulated
using Eq. (4) with 3% Normally distributed pseudo-random error.
The smooth curve represents the best least-squares fit of the data
points to Eq. (4). The best-fit values of adjustable model parame-
ters are E = (1.07 ± 0.05) nM and K = (42 ± 11) pM. This is very close
to the simulated or ‘‘true’’ value of K = 50 pM.

Monte Carlo study: scan of inhibition constants

The purpose of the following heuristic simulation study was to
evaluate the efficiency of the D-optimal design not just for one par-
ticular value of the inhibition constant, illustrated in Fig. 3
(K = 50 pM), but for a wide range of simulated (i.e., ‘‘true’’) inhibi-
tion constants spanning from 10 pM to 1 lM. To this end, 1000
dose–response curves were simulated at randomly chosen values
of the inhibition constant K. As before, each curve was simulated
using Eq. (4) as the underlying theoretical model. The



Fig.3. Example of an optimal design for screening. The simulated data points
correspond to K = 50 pM. The smooth curve corresponds to the best least-squares fit
to Eq. (1), yielding K = (42 ± 11) pM. For further details, see text.
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pseudo-random error superimposed on each simulated data point
was 3%. The simulated dose–response curves were subjected to
nonlinear regression to determine best-fit value of K. The results
are summarized in Fig. 4.

Fig. 4 shows that the recovery of the ‘‘true’’ inhibition constants
from the simulated datasets is very satisfactory at K/E > 1. More
important, even for extremely tight-binding inhibitors (0.01 < K/
E < 0.1), the best-fit values of inhibition constants agree with the
simulated or ‘‘true’’ values within an order of magnitude.
Fig.4. Correlation of simulated (‘‘true’’) versus fitted values of inhibition constants
using the optimized design I = 1001, 101, 11, 4, 1.3, 1, 0.7, and 0 nM and assuming
E = 1 nM.
Comparison with a serial dilution design

The advantages of the optimal experimental design, derived
from the Box–Lucas D-optimality criterion, are best illustrated in
a comparison with the classic serial dilution design that is com-
monly used in inhibitor screening studies. With target inhibition
constants spanning from 10 pM to 1 lM, a typical serial dilution
design might involve inhibitor concentrations equal to 1000, 100,
10, 1, 0.1, 0.01, 0.001, and 0.0001 nM. The maximum inhibitor con-
centration is equal to the largest relevant value of the inhibition
constant. The remaining concentrations are derived by 10-fold se-
rial dilution. Let us assume that a particular tight-binding inhibitor
is characterized by the apparent inhibition constant K = 50 pM.
Fig. 5 shows a simulated serial dilution dose–response curve for
such a hypothetical inhibitor.

As before, the filled rectangles in Fig. 5 (pseudo-experimental
data points) were simulated using Eq. (1) with 3% normally distrib-
uted pseudo-random error. The smooth curve represents the best
least-squares fit of the data points to Eq. (1). The best-fit values
of adjustable model parameters are E = (1.1 ± 0.2) nM and
K = (26 ± 38) pM.

These results illustrate the inferiority of the traditional fixed ra-
tio serial dilution series in two different ways. First, the ‘‘best-fit’’
value of the inhibition constant ðKðfitÞ ¼ 26 pM) is significantly dif-
ferent from the simulated or ‘‘true’’ value ðKðtrueÞ ¼ 50 pM). More
important, the formal standard error of the inhibition constant
(±38 pM) is so large that it is physically meaningless. We must con-
clude that no meaningful value for K could be obtained from the
synthetic dataset pictured in Fig. 5.

A striking illustration of how poorly the serial dilution design
performs is shown in Fig. 6. A Monte Carlo confidence interval
study was performed according to the computational technique
previously described by Straume and Johnson [10]. Here 1000
dose–response curves were simulated for a hypothetical enzyme
inhibitor characterized by K = 50 pM using either the classic serial
dilution design, I¼1000;100;10;1;0:1;0:01;0:001; and 0:0001 nM,
or the optimized design, I ¼ 1001;101;11;4;1:3;1;0:7; and
0:0001 nM. In both cases, the dose–response curves contained
Fig.5. Example of a serial dilution experimental design. The simulated data points
correspond to K = 50 pM. The smooth curve corresponds to the best least-squares fit
to Eq. (1), yielding K = (26 ± 38) pM. For further details, see text.



Fig.6. Monte Carlo confidence intervals for the inhibition constant K using either the conventional serial dilution experiment design I = 1000, 100, 10, 1, 0.1, 0.01, 0.001, and
0.0001 nM (A) illustrated in Fig. 5 or the optimized design I = 1001, 101, 11, 4, 1.3, 1, 0.7, and 0.0001 nM (B) illustrated in Fig. 3. The ‘‘true’’ value K = 50 pM is shown by the
black triangle.

Optimal design for screening of enzyme inhibitors / P. Kuzmič / Anal. Biochem. 419 (2011) 117–122 121
eight data points. The pseudo-random experimental error was 3%.
Each simulated curve was fit to the underlying theoretical model
given by Eq. (4). For each particular experimental design, a histo-
gram of distribution for the 1000 best-fit values of K is shown in
Fig. 6.

Fig. 6 clearly shows that the recovery of the ‘‘true’’ (i.e., simu-
lated) inhibition constant K = 50 pM is very satisfactory for the
optimized design (Fig. 6B). The most frequently represented best-
fit value is K � 40 pM; nearly all best-fit values are spread over a
relatively narrow interval, spanning from K = 20 pM to K = 60 pM.

In contrast, the classic serial dilution experimental design pro-
duced the most frequently represented best-fit value of K that is
practically indistinguishable from zero, as is shown by the tall his-
togram bar at the left Fig. 6A. The rest of the best-fit values seem to
be centered around K = 10 pM, which is significantly different from
the ‘‘true’’ value of K = 50 pM.

Discussion

Many experiments in biochemical laboratories are performed
by using ad hoc experimental designs, usually handed down by lo-
cal tradition. For example, an informal survey of the pharmaceuti-
cal industry revealed that one laboratory always uses a 12-point
1:3 serial dilution design starting from 10 lM and ending with
56 pM (I = 10000, 3333.33, 1111.11, . . ., 0.17, 0.056 nM). Another
laboratory always uses an 8-point 1:4 serial dilution ranging from
1 lM down to 61 pM (I = 1000, 250, 62.5, . . ., 0.244, 0.061 nM), and
so on.

What are the relative merits of these various experimental de-
signs? Is it possible to come up with a rationally designed dilution
series for inhibitor screening, perhaps one that is not strictly regu-
lar but one that would allow the most precise and accurate mea-
surements possible? These are the questions addressed by the
theory of optimal experimental design [1,2]. Many important the-
oretical ideas, such as the Box–Lucas approach to optimal design
[3], did eventually filter into enzymological studies [4,5]. This arti-
cle is an extension of the Box–Lucas design ideas for dose–response
screening.

The main findings of the current study, summarized in the form
of a ‘‘cookbook’’ recipe, are as follows.

First, choose an enzyme concentration, E, that is as low as pos-
sible while still maintaining sufficient sensitivity and a reasonably
short overall duration of the enzyme assay. This particular choice
of the enzyme concentration determines the lower limit of the
apparent inhibition constant that can be reliably determined,
Kmin. Based on a previous theoretical study [8], it is practically pos-
sible to reliably determine K values that are approximately 20 to 50
times lower than E, but only if optimally chosen inhibitor concen-
trations are used.

Next, choose the maximum value of inhibition constant that is
still of interest in a particular screening project (a typical example
in the pharmaceutical industry is Kmax ¼ 10 lM). Any inhibitor
with K > Kmax can be declared ‘‘inactive.’’ Now compose a ‘‘design
table’’ similar to Table 1. In the left-most columns, list the values of
inhibition constants ranging from Kmax to Kmin stepping by an order
of magnitude or less. For each particular K value of interest, either
use Eqs. (7) and (8) if K > E, or use Eqs. (11) to (13) if K 6 E.

Finally, consolidate all concentrations generated in the ‘‘design
table,’’ such that all possible duplicates are removed and concen-
trations that are sufficiently similar (e.g., within two significant



Table 2
A 12-point rational design for inhibitor screening at E = 0.1 nM.

K (nM) I1 (nM) I2 (nM) I3 (nM) Point Iopt (nM)

10,000 0 10000.1 – 1 10,000
2000 0 2000.1 – 2 2000
400 0 400.1 – 3 400
80 0 80.1 – 4 80
16 0 16.1 – 5 16
3.2 0 3.3 – 6 3.3
0.64 0 0.74 – 7 0.74
0.128 0 0.228 – 8 0.23
0.0256 0 0.07 0.177 9 0.18
0.00512 0 0.07 0.115 10 0.11
0.001024 0 0.07 0.103 11 0.07

12 0
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digits) are merged into a single value. The result is the optimal de-
sign for screening according to the Box–Lucas method.

At least one additional example might further illustrate the
newly proposed experimental design. Let us assume that we plan
to lay out a 12-point dilution series in an inhibitor screening pro-
ject, where the goal is to capture inhibition constants spanning
from 10 lM down to 1 pM (seven orders of magnitude). The vari-
ous values of the inhibition constants of interest are spaced by a
factor of five rather than by an order of magnitude. Let us also as-
sume that the screening concentration of the enzyme is E = 0.1 nM.

The ‘‘design table’’ for this situation is shown in Table 2, where
the optimally chosen inhibitor concentrations are shown in the
right-most column. For those rows where no I3 value is given, we
used Eqs. (7) and (8) for the two-point optimal design; otherwise,
the three-point empirical formulas (Eqs. (11) to (13)) were used.
Here we have consolidated the closely spaced values
I3 ¼ 0:115 nM and I3 ¼ 0:103 nM into a single value Iopt ¼
0:11 nM. Supporting Monte Carlo simulations (results not shown)
confirmed that the optimal experimental design listed in Table 2 in-
deed is suitable for precisely determining inhibition constants
spanning seven orders of magnitude.
In summary, we have described a rational approach to design-
ing inhibitor dose–response screening experiments in the sense
of optimally choosing inhibitor concentrations. The optimality cri-
terion is based on the Box–Lucas statistical theory of D-optimal de-
signs [3]. The resulting optimized dilution series are irregular in
the low-concentration region. The low-concentration region of
each dilution series is closely linked to the (fixed) enzyme concen-
tration. In creating the optimal dilution series, the enzyme concen-
tration is optionally treated as an adjustable model parameter
rather than a fixed constant, according to our previously published
theoretical analysis [8]. Unlike the conventional fixed ratio dilution
series, the optimal dilution series are characterized by very high
efficiency in the precise and accurate determination of apparent
inhibition constants. A free online ‘‘calculator’’ to create optimized
dilution series is available at http://www.biokin.com/design/.

References

[1] V.V. Fedorov, Theory of Optimal Experiments, Academic Press, New York, 1972.
[2] A.C. Atkinson, A.N. Donev, Optimum Experiment Designs, Oxford University

Press, Oxford, UK, 1992.
[3] G.E.P. Box, H.L. Lucas, Design of experiments in non-linear situations,

Biometrika 46 (1959) 77–90.
[4] R.G. Duggleby, Experimental designs for estimating the kinetic parameters for

enzyme-catalysed reactions, J. Theor. Biol. 81 (1979) 671–684.
[5] L. Endrenyi, F.Y. Chan, Optimal design of experiments for the estimation of

precise hyperbolic kinetics and binding experiments, J. Theor. Biol. 90 (1981)
241–263.

[6] S. Cha, Tight-binding inhibitors: I. Kinetic behavior, Biochem. Pharmacol. 24
(1975) 2177–2185.

[7] J.W. Williams, J.F. Morrison, The kinetics of reversible tight-binding inhibition,
Methods Enzymol. 63 (1979) 437–467.
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